The mechanical properties of myocardium vary across the transmural aspect of the left ventricular wall. Some of these functional heterogeneities may be related to differences in excitation-contraction coupling characteristics that have been observed in cells isolated from the epicardial, mid-myocardial and endocardial regions of the left ventricle of many species, including canine. Integrative models of coupled myocyte electromechanics are reviewed and used here to investigate sources of heterogeneous electromechanical behaviour in these cells. The simulations (i) illustrate a previously unrecognized role of the transient outward potassium current in mechanical function and (ii) suggest that there may also exist additional heterogeneities affecting crossbridge cycling rates in cells from different transmural regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556206 | PMC |
http://dx.doi.org/10.1098/rsta.2008.0088 | DOI Listing |
Biophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFChaos
January 2025
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.
View Article and Find Full Text PDFCells
December 2024
Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes.
View Article and Find Full Text PDFJ Am Heart Assoc
October 2024
Department of Neuroscience, Cell Biology & Physiology Boonshoft School of Medicine and College of Science and Mathematics, Wright State University Dayton OH.
Background: Heart failure (HF) presents a massive burden to health care with a complex pathophysiology that results in HF with reduced left ventricle ejection fraction (EF) or HF with preserved EF. It has been shown that relatively modest changes in protein glycosylation, an essential posttranslational modification, are associated with clinical presentations of HF. We and others previously showed that such aberrant protein glycosylation in animal models can lead to HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!