Nanoparticle-based, silver-enhanced DNA electrical detection shows great promise for point-of-care diagnostics. In this paper, we demonstrate that the dip pen nanolithography (DPN) method can be used to precisely functionalize multiple electrical gaps for multiplexed DNA detection. With the use of the DPN technique, capture ssDNAs are written inside 5 microm x 10 microm electrical gaps on substrates. The DPN functionalized electrical gaps can specifically hybridize to target ssDNAs in solution. Successful hybridization of the capture-target DNA complex is detected by the use of gold nanoparticles carrying ssDNA, which also hybridize to the target ssDNA, followed by silver enhancement. The drop of resistance across the gaps due to the formation of metal nanoparticle-DNA complexes is measured over time and compared against characteristics of control gaps, which are either left unfunctionalized or functionalized with noncomplementary capture ssDNA. This technique has potential for high-density multiplexed DNA assay chips. Multiplex detection of two different target ssDNAs in solution using DPN functionalized electrical gaps on the same chip is demonstrated. The lowest detection limit is 10 pM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac800445pDOI Listing

Publication Analysis

Top Keywords

electrical gaps
20
functionalized electrical
12
multiplexed dna
12
dip pen
8
pen nanolithography
8
gaps multiplexed
8
dna detection
8
dpn functionalized
8
hybridize target
8
target ssdnas
8

Similar Publications

Household electrification is an important pillar of decarbonization in the US and requires the rapid adoption of electric heat pumps. Household energy models that project adoption rates do not represent these decisions well. To what extent are they limited by fundamental knowledge gaps, or is there scope to incorporate insights from the social science literature? We review the energy modeling and social science literature on heating equipment adoption to synthesize our understanding of adoption decisions, to identify best practices on representing decision-making behavior among energy models, and to suggest model improvements.

View Article and Find Full Text PDF

Oxygen Activation Biocatalytic Precipitation Strategy Based on a Bimetallic Single-Atom Catalyst for Photoelectrochemical Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Article Synopsis
  • The traditional biocatalytic precipitation (BCP) method has limitations due to HO's tendency to self-decompose, affecting its effectiveness in quantitative analysis.
  • Researchers discovered that a bimetallic single-atom catalyst (Co/Zn-N-C SAC) can activate dissolved oxygen to create reactive oxygen species, leading to improved detection methods.
  • The development of a new oxygen-activated photoelectrochemical (PEC) biosensor for chloramphenicol (CAP) detection demonstrates enhanced stability and accuracy by using Co/Zn-N-C SAC and cesium platinum bromide nanocrystals (CsPtBr NCs) without needing external reactants.
View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system.

J Hazard Mater

January 2025

Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:

Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.

View Article and Find Full Text PDF

Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!