A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum amplified isomerization in polymers based on triplet chain reactions. | LitMetric

Quantum amplified isomerization in polymers based on triplet chain reactions.

J Org Chem

Research Laboratories, Eastman Kodak Company, Rochester, New York 14650-2116, USA.

Published: August 2008

Photoinitiated triplet quantum amplified isomerizations (QAI) of substituted Dewar benzene derivatives in polymeric media are reported. The quantum efficiencies and the ultimate extents of reactant-to-product conversions increase significantly with the incorporation of appropriate co-sensitizers; compounds whose triplet energies are similar to or lower than that of the sensitizer and close to that of the reactant. These co-sensitizers serve to promote chain-propagating energy transfer processes and thereby increase the action sphere of photosensitization. Isomerization quantum yields increase, as predicted, with increasing concentrations of the reactants and the co-sensitizers. Chain amplifications as large as approximately 16 and extents of conversion that approach 100% have been achieved. Mechanistic schemes are proposed to account for the dynamics of the inherent energy transfer processes and provide a predictively useful model for the design of a new class of photoresponsive polymers based on changes in the refractive index of the materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo8007786DOI Listing

Publication Analysis

Top Keywords

quantum amplified
8
polymers based
8
energy transfer
8
transfer processes
8
quantum
4
amplified isomerization
4
isomerization polymers
4
based triplet
4
triplet chain
4
chain reactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!