Suspension aquaculture of filter-feeding bivalves can produce large amount of faeces and pseudofaeces (biodeposits) that may impact aquaculture environment, while deposit-feeding sea cucumbers may effectively utilize such particulate wastes and act as a scavenger in mariculture system. In this paper, the ingestion, growth, and excretion of deposit-feeder Apostichopus japonicus were investigated in situ seasonally to evaluate its bioremediation potential of a suspension aquaculture system of filter-feeding bivalves. The results showed that A. japonicus could grow well in newly designed culture nets, with its maximum specific growth rate being 0.34% d(-1). The A. japonicus could effectively use the biodeposits generated by co-cultured bivalves, and the ingestion rate at 21.2 degrees C in summer, 19.2 degrees C in autumn, and 7.7 degrees C in winter was 0.1746, 0.0989, and 0.0050 g g(-1) d(-1), respectively. A. japonicus could promote the regeneration of nutriens in biodeposits via the excretion of considerable amount of dissolved N and P, and the excretion also showed obvious seasonal fluctuation. The extrapolation based on the in situ investigation results showed that when co-cultivated with bivalves in lantern nets, A. japonicus would ingest 4.5-159.6 kg hm(-2) d(-1) of dry biodeposits and excrete 1,382.5-3,678.1 mmol hm(-2) d(-1) of NH4(+)-N and 74.6-335.7 mmol hm(-2) d(-1) of PO4(3-)-P, indicating that the deposit-feeding A. japonicus had a great bioremediation capability in suspension aquaculture systems. The integrated model of deposit-feeding A. japonicus and filter-feeding bivalve could not only benefit the economy, but also sustain the environment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

suspension aquaculture
16
hm-2 d-1
12
japonicus
8
apostichopus japonicus
8
filter-feeding bivalves
8
d-1 japonicus
8
mmol hm-2
8
deposit-feeding japonicus
8
aquaculture
5
d-1
5

Similar Publications

This study evaluates the effectiveness of Total Reflection X-ray Fluorescence for multi-element analysis in mussels, focusing on sensitivity, precision, and detection limits. Additionally, it offers a cross-regional comparison of elemental composition in mussels from aquaculture farms in Italy, Spain, and Chile. TXRF, using suspensions of mussel samples, proved effective in detecting minor and trace elements, with recovery rates over 80% for Fe, Cu, Zn, As, and Sr.

View Article and Find Full Text PDF

Improving protein hydrolysis and digestibility in biomass through recombinant peptidases (EC 3.4): Opportunities for monogastric animal diets.

Heliyon

January 2025

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.

This study investigates the use of recombinant peptidases (EC 3.4) to improve protein hydrolysis and digestibility in , with a focus on addressing the challenge of reduced protein bioavailability for monogastric animals due to resistant protein-pigment formations, such as phycocyanin, and increased digesta viscosity caused by jellification properties. A library of 192 peptidases was generated, from which 142 soluble peptidases were expressed in and subsequently screened for activity against an suspension .

View Article and Find Full Text PDF

Management of natural resources and environmental systems has often involved top-down approaches in which government agencies set and enforce regulations on extractive activities. More recently, market-driven approaches were introduced to incentivise producers to voluntarily engage in practices that align with management objectives and support regulations. For the first time, we compare government and voluntary approaches within fisheries management systems and quantify their relative influences on the sustainability status of fish populations.

View Article and Find Full Text PDF

Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges.

AIMS Microbiol

November 2024

Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan.

Probiotics, known for their health benefits as living microorganisms, hold significant importance across various fields, including agriculture, aquaculture, nutraceuticals, and pharmaceuticals. Optimal delivery and storage of probiotic cells are essential to maximize their effectiveness. Biopolymers, derived from living sources, plants, animals, and microbes, offer a natural solution to enhance probiotic capabilities and they possess distinctive qualities such as stability, flexibility, biocompatibility, sustainability, biodegradability, and antibacterial properties, making them ideal for probiotic applications.

View Article and Find Full Text PDF

Disinfectants and antiseptics lead in reducing the number of microorganisms, including pathogenic ones, thus limiting the number of infections. In the veterinary field, disinfection prevents the transfer of pathogenic microorganisms from animals to humans and , as well as among animals. Several assays of disinfectant antimicrobial activity testing, often not standardized, without appropriate controls, and not validated, have been used and published.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!