[Effects of exogenous Ca2+ on the growth and Zn accumulation of two Sedum alfredii Hance ecotypes].

Ying Yong Sheng Tai Xue Bao

College of Resources and Environmental Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.

Published: April 2008

A hydroponic study was conducted to investigate the biomass, root morphology, and zinc (Zn), calcium (Ca) and sulfur (S) contents of two Sedum alfredii ecotypes under effects of different concentration calcium (Ca2+) addition. The results showed that with increasing exogenous Ca2+ concentration, the dry mass of the two S. alfredii ecotypes increased, and the shoot dry mass of hyperaccumulation ecotype increased significantly (P <0.05). The root length and root surface area of hyperaccumulation ecotype increased with increasing exogenous Ca2+ concentration, while those of non-hyperaccumulation ecotype were in adverse. The Zn accumulation in the root, stem and leaf of hyperaccumulation ecotype was increased with increasing exogenous Ca2+ concentration though the differences among Ca2+ treatments were not significant (P >0.05), while the Zn accumulation in the shoot of non-hyperaccumulation ecotype was significantly low (P <0.05). The Ca accumulation in the root, stem and leaf of non-hyperaccumulation ecotype had a significant positive correlation with the concentration of exogenous Ca2+ (P <0.05), so as the S accumulation in the root of hyperaccumulation ecotype (P <0.01). Exogenous Ca2+ promoted the Zn absorption and accumulation of hyperaccumulation ecotype, while inhibited the Zn accumulation of non-hyperaccumulation ecotype. Appropriate concentration of exogenous Ca2+ could promote the growth of hyperaccumulation ecotype S. alfredii, and improve its ability of accumulating more zinc.

Download full-text PDF

Source

Publication Analysis

Top Keywords

exogenous ca2+
8
sedum alfredii
8
alfredii ecotypes
8
dry mass
8
[effects exogenous
4
ca2+ growth
4
growth accumulation
4
accumulation sedum
4
alfredii hance
4
hance ecotypes]
4

Similar Publications

Frost damage to apple flowers significantly affects both the quality and yield of apples, potentially leading to substantial economic losses. This study investigates the application of the environmentally friendly plant hormone 24-epibrassinolide (EBR) on apple flowers to assess its effects under frost stress conditions. The findings indicate that exogenous EBR treatment maintained favorable flower morphology, mitigated pistil browning, and reduced ion leakage.

View Article and Find Full Text PDF

Inducing resistance of postharvest fruits and vegetables through acibenzolar-S-methyl application: A review of implications and mechanisms.

Plant Physiol Biochem

January 2025

College of Food Science and Engineering, Bohai University, 121013, Jinzhou, PR China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, 121013, Jinzhou, PR China. Electronic address:

Significant losses of vegetables and fruits occur at multiple stages, including harvest, sorting, storage, and transportation, primarily due to mechanical damage, pathogen invasion, and the natural process of senescence. To mitigate postharvest decay and maintain superior quality of produce, conventional techniques such as low temperature storage and synthetic fungicide treatment are widely employed. Acibenzolar-S-methyl (ASM), an effective plant resistance inducers, has demonstrated its efficacy in protecting against a diverse range of fungal and bacterial pathogens.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

Background: Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway.

Methods: The UR rat model was established by 5/6 nephrectomy.

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!