The natural occurrence of Alternaria mycotoxins in Argentinean wheat from the zone 5 South during the 2004 to 2005 harvest was investigated in 64 wheat samples. All samples were highly contaminated with a wide range of fungal species. Alternaria was found as the main component of the mycota, with an infection percentage of 100%. Three mycotoxins produced by species of Alternaria were determined in wheat: alternariol, alternariol monomethyl ether, and tenuazonic acid. Alternariol was detected in 4 (6%) of 64 samples, with a range of 645 to 1,388 microg/kg (mean of 1,054 microg/kg); alternariol monomethyl ether, with a range of 566 to 7,451 microg/kg (mean of 2,118 microg/kg) in 15 (23%) of 64 samples; and tenuazonic acid in 12 (19%) of 64 samples, with a range of 1,001 to 8,814 microg/kg (mean, 2,313 microg/kg). Alternariol monomethyl ether was the predominant toxin, but tenuazonic acid was detected in higher concentrations. Alternariol was present in fewer samples and in lower levels than were the other toxins. Tenuazonic acid and alternariol monomethyl ether occurred together in four samples, while tenuazonic acid and alternariol co-occurred in one sample. This the first report of the natural occurrence of Alternaria mycotoxins in Argentinean wheat. Toxin levels were high, probably due to the heavy infection with Alternaria species found in the samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-71.6.1262 | DOI Listing |
J Expo Sci Environ Epidemiol
January 2025
Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
Background: Tenuazonic acid (TeA), a mycotoxin produced by Alternaria alternata, contaminates various food commodities and is known to cause acute and chronic health effects. However, the lack of human toxicokinetic (TK) data and the reliance on external exposure estimates have stalled a comprehensive risk assessment for TeA.
Objective: To bridge this gap, a human TK trial and population-based TK (PopTK) modeling were applied to determine human TK parameters of TeA, and the results were applied for risk screening using population biomonitoring data and threshold of toxicological concern (TTC)-based approaches.
Toxins (Basel)
December 2024
Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.
toxins (ATs) are a group of toxins produced by fungi that frequently contaminate tomatoes and tomato products. Recently, the European Food Safety Authority evaluated ATs for their genotoxic and carcinogenic properties. infestation is often controlled using ad hoc treatment strategies (fungicides).
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. Electronic address:
The mycotoxin tenuazonic acid (TeA) inhibits photosynthesis and is expected to be developed as a bioherbicide to control Ageratina adenophora that is one of the most serious invasive alien plants in China. New leaves sprouting from A. adenophora at low temperatures (LT) in early spring are less sensitive to TeA compared to those growing in summer.
View Article and Find Full Text PDFMycotoxin Res
February 2025
Department of Human, Biological, and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia.
Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFBull Exp Biol Med
December 2024
Federal Research Centre of Nutrition, Biotechnology, and Food Safety, Moscow, Russia.
Micromycetes from the genus Alternaria are commonly found in plant food raw materials, and their produced emerging mycotoxins (EMT) pose a risk to human health. Based on polyphase taxonomy, we studied the species composition of the Alternaria spp. population in samples of Russian grain and berries; non-toxinogenic species of Alternaria of the Infectoriae section and toxinogenic species of the Alternaria section were found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!