Determination of maintenance coefficients of Saccharomyces cerevisiae cultures with cell recycle by cross-flow membrane filtration.

Biotechnol Bioeng

Centre de Transfert en Biotechnologie-Microbiologie, Department de Génie Biochimique et Alimentaire, UA-CNRS-544, Institut National des Sciences Appliquées, Avenue de Rangueil, 31077 Toulouse Cédex, France.

Published: January 1990

The fermentation of glucose by a strain of Saccharomyces cerevisiae was studied in a continuous single-stage process with recycle of the cells via cross-flow micro-filtration membranes. Operating conditions were selected such that the culture was not carbon limited and inhibition by ethanol and cell death were minimized.Steady states were obtained for various biomass bleeding rates, i.e., various specific growth rates. From the experimental data, the stoichiometry of the simultaneous reactions, cell growth, ethanol production and maintenance were established using mass and degree of reduction balance relative to substrates (carbon source and oxygen) and products (biomass, ethanol, carbon dioxide etc.), and the growth parameters, yields, and maintenance cofficients were determined. It was shown that the oxygen consumption was not linked to the kinetics of the fermentation. The calculated growth constants were discussed and compared to the currently reported values.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.260350211DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
determination maintenance
4
maintenance coefficients
4
coefficients saccharomyces
4
cerevisiae cultures
4
cultures cell
4
cell recycle
4
recycle cross-flow
4
cross-flow membrane
4
membrane filtration
4

Similar Publications

Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.

View Article and Find Full Text PDF

Erythritol is a beneficial sugar alcohol that can be used as a sugar substitute for diabetic patients. Erythritol is a bioproduct produced by microorganisms as a response to high osmotic pressure and stress in the growth medium. High concentrations of carbon source substrate can increase the osmotic pressure and provide more nutrient supply for yeast growth and metabolism.

View Article and Find Full Text PDF

Yeast immobilization systems can recoup yeast losses in continuous batch fermentation and relieve substrate or product inhibition. We report the use of solution blow spinning process to efficiently prepare polyhydroxyalkanoate (PHB) /konjac glucomannan (KGM) nanofiber membranes as immobilization carriers for Saccharomyces cerevisiae. The prepared PHB/KGM nanofiber membranes had fiber diameters similar to the scale of yeast cells.

View Article and Find Full Text PDF

The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.

View Article and Find Full Text PDF

Degradation of aberrant, excess, and regulatory proteins at the endoplasmic reticulum (ER) is a conserved feature of eukaryotic cells, disruption of which contributes to disease. While remarkable progress has been made in recent years, mechanisms and genetic requirements for ER-Associated Degradation (ERAD) remain incompletely understood. We recently conducted a screen for genes required for turnover of a model ER translocon-associated substrate of the Hrd1 ubiquitin ligase in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!