The mitotic checkpoint system ensures the fidelity of chromosome segregation by preventing the completion of mitosis in the presence of any misaligned chromosome. When activated, it blocks the initiation of anaphase by inhibiting the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). Little is known about the biochemical mechanisms by which this system inhibits APC/C, except for the existence of a mitotic checkpoint complex (MCC) inhibitor of APC/C composed of the APC/C activator Cdc20 associated with the checkpoint proteins Mad2, BubR1, and Bub3. We have been studying the mechanisms of the mitotic checkpoint system in extracts that reproduce its downstream events. We found that inhibitory factors are associated with APC/C in the checkpoint-arrested state, which can be recovered from immunoprecipitates. Only a part of the inhibitory activity was caused by MCC [Braunstein I, Miniowitz S, Moshe Y, Hershko A (2007) Proc Natl Acad Sci USA 104:4870-4875]. Here, we show that during exit from checkpoint, rapid disassembly of MCC takes place while APC/C is still inactive. This observation suggested the possible involvement of multiple factors in the regulation of APC/C by the mitotic checkpoint. We have separated a previously unknown inhibitor of APC/C from MCC. This inhibitor, called mitotic checkpoint factor 2 (MCF2), is associated with APC/C only in the checkpoint-arrested state. The inhibition of APC/C by both MCF2 and MCC was decreased at high concentrations of Cdc20. We propose that both MCF2 and MCC inhibit APC/C by antagonizing Cdc20, possibly by interaction with the Cdc20-binding site of APC/C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453698PMC
http://dx.doi.org/10.1073/pnas.0804069105DOI Listing

Publication Analysis

Top Keywords

mitotic checkpoint
24
apc/c
12
anaphase-promoting complex/cyclosome
8
activator cdc20
8
checkpoint system
8
mcc inhibitor
8
inhibitor apc/c
8
associated apc/c
8
apc/c checkpoint-arrested
8
checkpoint-arrested state
8

Similar Publications

During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.

View Article and Find Full Text PDF

Unveiling the Movement of RanBP1 During the Cell Cycle and Its Interaction with a Cyclin-Dependent Kinase (CDK) in Plants.

Int J Mol Sci

December 2024

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.

In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.

View Article and Find Full Text PDF

Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.

View Article and Find Full Text PDF

Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.

View Article and Find Full Text PDF

(maize) is both an agronomically important crop and a powerful genetic model system with an extensive molecular toolkit and genomic resources. With these tools, maize is an optimal system for cytogenetic study, particularly in the investigation of chromosome segregation. Here, we review the advances made in maize chromosome segregation, specifically in the regulation and dynamic assembly of the mitotic and meiotic spindle, the inheritance and mechanisms of the abnormal chromosome variant Ab10, the regulation of chromosome-spindle interactions via the spindle assembly checkpoint, and the function of kinetochore proteins that bridge chromosomes and spindles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!