Post-transcriptional regulation of myelin formation.

Biochim Biophys Acta

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, LRB-906, Worcester, MA, 01605, USA.

Published: August 2008

Myelin is a specialized structure of the nervous system that both enhances electrical conductance and protects neurons from degeneration. In the central nervous system, extensively polarized oligodendrocytes form myelin by wrapping cellular processes in a spiral pattern around neuronal axons. Myelin formation requires the oligodendrocyte to regulate gene expression in response to changes in its extracellular environment. Because these changes occur at a distance from the cell body, post-transcriptional control of gene expression allows the cell to fine-tune its response. Here, we review the RNA-binding proteins that control myelin formation in the brain, highlighting the molecular mechanisms by which they control gene expression and drawing parallels from studies in other cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2008.06.003DOI Listing

Publication Analysis

Top Keywords

myelin formation
12
gene expression
12
nervous system
8
control gene
8
myelin
5
post-transcriptional regulation
4
regulation myelin
4
formation myelin
4
myelin specialized
4
specialized structure
4

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change.

View Article and Find Full Text PDF

Lingo1 in the hippocampus contributes to cognitive dysfunction after anesthesia and surgery in aged mice.

Int J Biol Sci

January 2025

Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Cognitive impairment caused by anesthesia and surgery is one of the most common complications with multiple etiologies that occurs in elderly patients. The underlying mechanisms are not fully understood, and there is a lack of therapeutic strategies. Increasing evidence has demonstrated that myelin loss, abnormal phosphorylation of the tau protein and neuronal apoptosis are substantial driving factors of cognitive deficits.

View Article and Find Full Text PDF

We report the first case of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) evaluated with hypoxic imaging using 18F-FAZA PET/CT. A healthy woman in her 20s presented to our hospital with seizures, headaches, and vomiting. MRI and CT scans suggested a wide range of differential diagnoses, from neoplastic lesions, such as malignant lymphoma, to inflammatory diseases, such as vasculitis, making her case challenging to diagnose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!