The aim of this study was to investigate the structure of different solid-state forms of fenofibrate, a drug that lacks strong intermolecular interactions such as hydrogen bonding. In addition to a structural analysis of crystalline and amorphous fenofibrate using infrared and Raman spectroscopy combined with density functional theory calculations [B3LYP 6-31G(d)], solid-state changes that occur upon recrystallization of amorphous fenofibrate were monitored and described using in situ Raman spectroscopy. A comparison of the calculated vibrational spectra of a fenofibrate monomer and two dimer structures with the experimental vibrational spectra of crystalline and amorphous fenofibrate revealed conformational differences in the orientation of the two benzyl rings in the fenofibrate molecule and structural differences between the different solid-state forms in aliphatic parts of the drug molecule. The spectroscopic analysis suggests that non-hydrogen-bonded drug molecules are likely to exhibit more random molecular orientations and conformations in the amorphous phase since the weak intermolecular interactions that occur between such molecules can easily be disrupted. In situ Raman spectroscopy and multivariate analysis revealed multiple solid-state forms of fenofibrate, including the metastable crystalline form II, which were structurally analyzed with reference to the quantum chemical calculations. Overall, the study showed that vibrational spectroscopy, multivariate analysis, and quantum chemical modeling are well suited to investigate and characterize the structure of drug substances that exhibit only small structural differences between different solid-state forms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2008.05.030 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (ICT KSC RAS), Apatity 184209, Murmansk Region, Russia.
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
Eutectic-based polymer electrolytes have emerged as promising solid electrolytes because of their ionic liquid-like properties, while modifications are essential to further increase their ionic conductivity at room temperature and solve their compatibility with lithium anode. In this work, an in situ polymerized composite electrolyte is modified by the addition of fluoroethylene carbonate (FEC) whose beneficial effect is systematically investigated in different contents. Poly(ethylene glycol) diacrylate (PEGDA), deep eutectic solvent (LiTFSI:-methylacetamide = 1:3), and alumina fiber work as the monomer, solvent, and three-dimensional skeleton, respectively.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Polymers for Electronics and Photonics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic.
The structural response of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (H NMR, P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!