Utilization of solid nanomaterials for drug delivery.

Expert Opin Drug Deliv

Department of Physics, Engineering and Physics Building, University of Idaho, Moscow, ID 83844-0903, USA.

Published: July 2008

Background: Solid nanostructures are versatile platforms for constructing hybrid drug delivery systems that have tremendous potential for improving disease prevention and treatment. The rationale and application of solid nanostructures in the context of drug delivery are explored in this article.

Objective: The purpose of this paper is to provide a concise review of the major attributes of solid nanostructures as they relate to drug delivery and to describe the outstanding issues that need to be addressed in order to develop these materials into clinically useful reagents.

Methods: The scope of this opinion has been restricted to solid nanostructures, where solid nanostructures are defined as those that are not biodegradable. The opinion has been further limited to the three primary types of nanostructures: nanoparticles, nanowires and nanotubes.

Results/conclusion: There is a need for cross-disciplinary training and standardized protocols for developing and evaluating the efficacy of solid nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.5.7.725DOI Listing

Publication Analysis

Top Keywords

solid nanostructures
20
drug delivery
16
solid nanomaterials
8
solid
6
nanostructures
6
utilization solid
4
drug
4
nanomaterials drug
4
delivery
4
delivery background
4

Similar Publications

The nanoengager strategy, which enhances receptor signaling responsiveness through a multivalent ligand binding mode, offers a promising approach for improving immune cell redirecting therapy. Increasing nanomaterial platforms have been developed for constructing more flexible and multifunctional nanoengagers, but the different mediating mechanisms from their multivalent nanostructures, compared to original monomolecule engagers, have rarely been discussed. Here, we constructed dual-specificity T cell nanoengagers (TNEs) targeting CD3 and PDL1 receptors based on a polyethylene glycol--polylactic acid (PEG--PLA)-assembled nanoparticle and specifically studied the impact of surface antibody valences on their functional mechanisms, thereby enhancing the structural advantages of TNEs against solid tumors.

View Article and Find Full Text PDF

Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.

View Article and Find Full Text PDF

The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.

View Article and Find Full Text PDF

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!