A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ligand-binding pocket shape differences between sphingosine 1-phosphate (S1P) receptors S1P1 and S1P3 determine efficiency of chemical probe identification by ultrahigh-throughput screening. | LitMetric

We have studied the sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G-protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonist chemotypes for each of the S1P1 and S1P3 receptors. Ultrahigh-throughput screening (uHTS) for S1P1 was more effective than that for S1P3, with many selective, low nanomolar hits of proven mechanism emerging. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for subtype selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of headgroup interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 versus S1P3 in this closely related receptor family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597349PMC
http://dx.doi.org/10.1021/cb800051mDOI Listing

Publication Analysis

Top Keywords

sphingosine 1-phosphate
8
1-phosphate s1p
8
s1p1 s1p3
8
ultrahigh-throughput screening
8
s1p receptor
8
screening libraries
8
novel selective
8
receptor
7
ligand-binding pocket
4
pocket shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!