Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.028 | DOI Listing |
J Hazard Mater
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China. Electronic address:
The Mercury (II) ion (Hg²⁺) is a toxic heavy metal that threatens biological systems by inducing oxidative stress and disrupting the redox balance. Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are critical in maintaining redox homeostasis and are implicated in numerous physiological and pathological processes. Understanding the complex interactions between Hg²⁺ and biothiols requires molecular tools capable of simultaneous detection.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Liaoning Province Key Laboratory for phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shengyang, PR China. Electronic address:
Aim: Long-term exposure to excess sodium fluoride (NaF) can cause chronic fluorosis. Liver, the most important detoxification organ, is the most vulnerable to the effects of fluoride. Sodium butyrate (NaB), a short-chain fatty acid produced in the intestinal tract, maintains normal mitochondrial function in vivo and reduces liver inflammation and oxidative stress.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFBioengineered
December 2025
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
NCNST: National Center for Nanoscience and Technology, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, No 11, Zhongguancun Beiyitiao, Haidian, 100190, Beijing, CHINA.
Cisplatin (CP) is a first-line platinum-based drug used for the treatment of head and neck cancer. However, tumor cells can diminish the therapeutic effects of CP through the detoxification system mediated by glutathione (GSH) and the nucleotide excision repair (NER) pathway. Herein, we present a light-activable and pH-responsive oxidative stress nanoamplifier (FPLC@IR OSNA), comprising an amphiphilic compound (FPLC) with Fmoc-lysine acting as a connector between a nitroimidazole derivative and a pH-responsive cinnamaldehyde (CA) derivative, loaded with photosensitizer IR780.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!