Probing local effects in silica sol-gel media by fluorescence spectroscopy of p-DASPMI.

J Phys Chem B

Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.

Published: July 2008

Stillbazolium salts present remarkable potential for application in several scientific areas. Their versatile behavior is explained by invoking the "twisted intramolecular charge-transfer" (TICT) mechanism, a model that describes the multiple fluorescence of DASPMI (4-(4-(dimethylamino)styryl)- N-methylpyridiniumiodine). One feature of their behavior is the sensitivity of the fluorescence lifetime to viscosity, thus identifying them as suitable probes for microheterogeneous systems, such as cells and sol-gel derived media. Because of their optical transparency, sol-gel matrices are light addressable and therefore appropriate for performing spectroscopic studies. The sol-gel process has been successfully used to produce hosts to biomolecules like proteins, for biosensor applications; however, these systems have to be optimized. Therefore, in this study modification of the matrices was performed through the incorporation of either silanes or polymers. (Aminopropyl)triethoxysilane, trimethoxypropylsilane, or (glycidyloxypropyl)triethoxysilane were added. The modification was also extended to the incorporation of the polymers poly(ethylene glycol) (molecular weight 300 and 20000) and Gelrite. The effect of these modifiers upon the gelation and aging processes was examined via the study of the photophysics of p-DASPMI by using both steady-state and time-resolved fluorescence. It was possible to discriminate the dominant dye-host interactions in each of the main steps of the preparation of modified sol-gel matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8013207DOI Listing

Publication Analysis

Top Keywords

sol-gel matrices
8
sol-gel
5
probing local
4
local effects
4
effects silica
4
silica sol-gel
4
sol-gel media
4
fluorescence
4
media fluorescence
4
fluorescence spectroscopy
4

Similar Publications

Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.

View Article and Find Full Text PDF

β-carotene and resveratrol loaded glycerol monostearate-based oleogels: Physicochemical characterization at low gelation concentrations.

Food Res Int

December 2024

International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal. Electronic address:

Oleogels are semi-solid systems that can function both as replacers of trans and saturated fats and/or as carriers of lipophilic bioactive compounds. However, bioactive compounds can affect the structure of the oleogel matrix and this effect depends on the properties of such compounds. Therefore, the aim of this study was to develop oleogels loaded with β-carotene (BC) or resveratrol (R), with low concentrations of glycerol monostearate (GMS, 2-5 wt%) and sunflower oil as organic solvent.

View Article and Find Full Text PDF

This study compared the chemical, structural, and luminescent properties of xerogel-based ceramic powders (CPs) with those of a new series of crystallized aerogels (CAs) synthesized by the epoxy-assisted sol-gel process. Materials with different proportions of Eu (2, 5, 8, and 10 mol%) were synthesized in LuO host matrices, as well as a EuO matrix for comparative purposes. The products were analyzed by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence analysis, and by the Brunauer-Emmett-Teller (BET) technique.

View Article and Find Full Text PDF

The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol-gel method.

View Article and Find Full Text PDF

Most embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!