Quantification of heavy metal concentrations in biota is a common technique that helps environmental managers measure the level of pollutants circulating in ecosystems. Despite interest in heavy metals as indicators of localized pollution, few studies have assessed these pollutants in reptiles. In 1998, the tailing pond of a pyrite mine near Aznalcóllar (southwestern Spain), containing mud with high heavy metal concentrations, collapsed, releasing 6 million m(3) of toxic sludge into the Guadiamar Basin. Here we analyze heavy metal concentrations in the most common reptile in the area, the large psammodromus, Psammodromus algirus, a rather small lizard. We quantified levels of several elements (Hg, Sb, Cd, Cr, Tl, Sn, Ba, Cu, Pb, Sr, Mn, Rb, As, and Zn) in lizard tail clips collected in and around the affected area during the springs of 2005 and 2006. Samples were collected from two contaminated localities, one directly affected by the spill, and another adjacent to the tailing pond, but not covered by toxic mud. We also collected samples from a nonpolluted control site in the same basin. We found higher concentrations of As, Tl, Sn, Pb, Cd, and Cu in lizards from the affected area than in lizards from the control site, indicating the continued presence of heavy metal pollutants in the terrestrial food chain 8 years after the mine accident. We did not uncover sexual or annual differences in heavy metal concentrations, although concentrations increased with lizard size. We discuss how heavy metals moved across the food chain to lizards, despite intensive restoration efforts after the accident, and suggest that reptiles to be included in biomonitoring programs of heavy metals pollution in terrestrial habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-008-9189-3 | DOI Listing |
Environ Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.
Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.
Sci Rep
January 2025
Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.
Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!