Targeting angiogenesis, the formation of blood vessels, is an important modality for cancer therapy. TNP-470, a fumagillin analog, is among the most potent and broad-spectrum angiogenesis inhibitors. However, a major clinical limitation is its poor oral availability and short half-life, necessitating frequent, continuous parenteral administration. We have addressed these issues and report an oral formulation of TNP-470, named Lodamin. TNP-470 was conjugated to monomethoxy-polyethylene glycol-polylactic acid to form nanopolymeric micelles. This conjugate can be absorbed by the intestine and selectively accumulates in tumors. Lodamin significantly inhibits tumor growth, without causing neurological impairment in tumor-bearing mice. Using the oral route of administration, it first reaches the liver, making it especially efficient in preventing the development of liver metastasis in mice. We show that Lodamin is an oral nontoxic antiangiogenic drug that can be chronically administered for cancer therapy or metastasis prevention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803109 | PMC |
http://dx.doi.org/10.1038/nbt1415 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.
The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.
View Article and Find Full Text PDFPract Radiat Oncol
January 2025
Department of Radiation Oncology, Christiana Care, Helen F. Graham Cancer Center & Research Institute, Newark, Delaware.
Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography.
View Article and Find Full Text PDFPract Radiat Oncol
December 2024
Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Quebec, Canada.
Purpose: Local recurrence of prostate cancer (PCa) after radiation therapy (RT) typically occurs at the site of dominant tumor burden, and recent evidence confirms that magnetic resonance imaging (MRI) guided tumor dose escalation improves outcomes. With the emergence of prostate-specific membrane antigen (PSMA) positron emission tomography (PET), we hypothesize that PSMA-PET and MRI may not equally depict the region most at risk of recurrence after RT.
Methods And Materials: Patients with intermediate- to high-risk PCa and MRI plus PSMA-PET performed before RT were identified.
Clin Lung Cancer
December 2024
Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!