Trap-jaw ants of the genus Odontomachus produce remarkably fast predatory strikes. The closing mandibles of Odontomachus bauri, for example, can reach speeds of over 60 m s(-1). They use these jaw strikes for both prey capture and locomotion - by striking hard surfaces, they can launch themselves into the air. We tested the hypothesis that morphological variation across the genus is correlated with differences in jaw speeds and accelerations. We video-recorded jaw-strikes at 70 000-100 000 frames s(-1) to measure these parameters and to model force production. Differences in mean speeds ranged from 35.9+/-7.7 m s(-1) for O. chelifer, to 48.8+/-8.9 m s(-1) for O. clarus desertorum. Differences in species' accelerations and jaw sizes resulted in maximum strike forces in the largest ants (O. chelifer) that were four times those generated by the smallest ants (O. ruginodis). To evaluate phylogenetic effects and make statistically valid comparisons, we developed a phylogeny of all sampled Odontomachus species and seven outgroup species (19 species total) using four genetic loci. Jaw acceleration and jaw-scaling factors showed significant phylogenetic non-independence, whereas jaw speed and force did not. Independent contrast (IC) values were used to calculate scaling relationships for jaw length, jaw mass and body mass, which did not deviate significantly from isometry. IC regression of angular acceleration and body size show an inverse relationship, but combined with the isometric increase in jaw length and mass results in greater maximum strike forces for the largest Odontomachus species. Relatively small differences (3%) between IC and species-mean based models suggest that any deviation from isometry in species' force production may be the result of recent selective evolution, rather than deep phylogenetic signal.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.015263DOI Listing

Publication Analysis

Top Keywords

trap-jaw ants
8
jaw
8
force production
8
maximum strike
8
strike forces
8
forces largest
8
odontomachus species
8
jaw length
8
phylogeny scaling
4
scaling generation
4

Similar Publications

Insects evolved various modifications to their mouthparts, allowing for a broad exploration of feeding modes. In ants, workers perform non-reproductive tasks like excavation, food processing, and juvenile care, relying heavily on their mandibles. Given the importance of biting for ant workers and the significant mandible morphological diversity across species, it is essential to understand how mandible shape influences its mechanical responses to bite loading.

View Article and Find Full Text PDF

Many living organisms exhibit exceptional capabilities and have evolved effective strategies to synthesize impact-resistant and damage-tolerant structures. One such example can be observed in the rapid mandible strikes of, a species of trap-jaw ants from the ponerine subfamily. During trap-jaw strikes, the mandibles can achieve peak speeds of 35.

View Article and Find Full Text PDF

A study of a bio-inspired impact resistant carbon fiber laminate with a sinusoidal helicoidal structure in the mandibles of trap-jaw ants.

Acta Biomater

October 2023

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100091, PR China; Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing, 100091, PR China. Electronic address:

The majority of living organisms demonstrate remarkable attributes and have evolved effective mechanisms for synthesizing impact-resistant and damage-tolerant structures. One exemplary instance is the rapid mandible strikes exhibited by trap-jaw ants, which are a highly aggressive species of terrestrial social organisms. An impact-resistant sinusoidal helicoidal architecture is discovered in the mandibles of trap-jaw ants.

View Article and Find Full Text PDF

Antimicrobial Peptide Arsenal Predicted from the Venom Gland Transcriptome of the Tropical Trap-Jaw Ant .

Toxins (Basel)

May 2023

Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil.

With about 13,000 known species, ants are the most abundant venomous insects. Their venom consists of polypeptides, enzymes, alkaloids, biogenic amines, formic acid, and hydrocarbons. In this study, we investigated, using in silico techniques, the peptides composing a putative antimicrobial arsenal from the venom gland of the neotropical trap-jaw ant .

View Article and Find Full Text PDF

Rapid movements of limbs and appendages, faster than those produced by simple muscle contraction alone, are generated through mechanical networks consisting of springs and latches. The latch plays a central role in these spring-loaded mechanisms, but the structural details of the latch are not always known. The mandibles of the trap-jaw ant Odontomachus kuroiwae closes the mandible extremely quickly to capture prey or to perform mandible-powered defensive jumps to avoid potential threats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!