Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A. Mutations in the C1 and C1-C2 domains of rFVa reduced the rate of activation of prothrombin to thrombin by FXa in the presence of 400 muM C6PS by 14 000- to 15 000-fold relative to either wild-type or C2 mutant factor rFVa. The K(d')s of FXa binding with rFVa (wild-type, C2 mutant, C1 mutant, and C1-C2 mutant) were 3, 4, 564, and 624 nM, respectively. Equilibrium dialysis experiments detected binding of 4, 3, and 2 molecules of C6PS to wild-type rFVa, C1-mutated, and C1,C2-mutated rFVa, respectively. Because FVa heavy chain binds 2 molecules of C6PS, we conclude that both C2 and C1 domains bind one C6PS, with binding to the C1 domain regulating prothrombinase complex assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556615PMC
http://dx.doi.org/10.1182/blood-2008-02-138941DOI Listing

Publication Analysis

Top Keywords

molecules c6ps
12
prothrombinase complex
8
factor rfva
8
wild-type mutant
8
c6ps
6
rfva
6
factor
5
domain
5
phosphatidylserine binding
4
binding site
4

Similar Publications

Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains.

View Article and Find Full Text PDF

Clinical studies have demonstrated a correlation between elevated levels of FIX and the risk of coronary heart disease, while reduced plasma FIX causes hemophilia B. FIXa interacts with FVIIIa in the presence of Ca2+ and phosphatidylserine (PS)-containing membranes to form a factor X-activating complex (Xase) that is key to propagation of the initiated blood coagulation process in human. We test the hypothesis that PS in these membranes up-regulates the catalytic activity of this essential enzyme.

View Article and Find Full Text PDF

Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A.

View Article and Find Full Text PDF

Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface.

Biochemistry

December 2005

Program in Molecular and Cellular Biophysics, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA.

Activation of prothrombin to thrombin is catalyzed by a "prothrombinase" complex, traditionally viewed as factor X(a) (FX(a)) in complex with factor V(a) (FV(a)) on a phosphatidylserine (PS)-containing membrane surface, which is widely regarded as required for efficient activation. Activation involves cleavage of two peptide bonds and proceeds via one of two released intermediates or through "channeling" (activation without the release of an intermediate). We ask here whether the PS molecule itself and not the membrane surface is sufficient to produce the fully active human "prothrombinase" complex in solution.

View Article and Find Full Text PDF

Previous work has shown that two molecules of a soluble form of phosphatidylserine, C6PS, bind to human and bovine factor X(a). Activity measurements along with the fluorescence of active-site-labeled human factor X(a) showed that two linked sites specifically regulate the active site conformation and proteolytic activity of the human enzyme. These results imply, but cannot demonstrate, a C6PS-induced factor X(a) conformational change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!