GenoQuery: a new querying module for functional annotation in a genomic warehouse.

Bioinformatics

Institut de Génétique et Microbiologie, Université Paris-Sud XI, 91405 Orsay Cedex, France.

Published: July 2008

Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data.

Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example.

Availability: http://www.lri.fr/~lemoine/GenoQuery/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718637PMC
http://dx.doi.org/10.1093/bioinformatics/btn159DOI Listing

Publication Analysis

Top Keywords

querying module
12
mixed queries
12
functional annotation
8
genomic warehouse
8
entities layer
8
queries mixed
8
alternative queries
8
queries
6
genoquery querying
4
module functional
4

Similar Publications

The attention mechanism has significantly progressed in various point cloud tasks. Benefiting from its significant competence in capturing long-range dependencies, research in point cloud completion has achieved promising results. However, the typically disordered point cloud data features complicated non-Euclidean geometric structures and exhibits unpredictable behavior.

View Article and Find Full Text PDF

The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation.

View Article and Find Full Text PDF

Introduction: Diabetic retinopathy grading plays a vital role in the diagnosis and treatment of patients. In practice, this task mainly relies on manual inspection using human visual system. However, the human visual system-based screening process is labor-intensive, time-consuming, and error-prone.

View Article and Find Full Text PDF

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results.

View Article and Find Full Text PDF

Pre-training and fine-tuning have become popular due to the rich representations embedded in large pre-trained models, which can be leveraged for downstream medical tasks. However, existing methods typically either fine-tune all parameters or only task-specific layers of pre-trained models, overlooking the variability in input medical images. As a result, these approaches may lack efficiency or effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!