This paper addresses the construction of a novel efficient rotation-invariant texture retrieval method that is based on the alignment in angle of signatures obtained via a steerable sub-Gaussian model. In our proposed scheme, we first construct a steerable multivariate sub-Gaussian model, where the fractional lower-order moments of a given image are associated with those of its rotated versions. The feature extraction step consists of estimating the so-called covariations between the orientation subbands of the corresponding steerable pyramid at the same or at adjacent decomposition levels and building an appropriate signature that can be rotated directly without the need of rotating the image and recalculating the signature. The similarity measurement between two images is performed using a matrix-based norm that includes a signature alignment in angle between the images being compared, achieving in this way the desired rotation-invariance property. Our experimental results show how this retrieval scheme achieves a lower average retrieval error, as compared to previously proposed methods having a similar computational complexity, while at the same time being competitive with the best currently known state-of-the-art retrieval system. In conclusion, our retrieval method provides the best compromise between complexity and average retrieval performance.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2008.924390DOI Listing

Publication Analysis

Top Keywords

rotation-invariant texture
8
texture retrieval
8
signature alignment
8
steerable sub-gaussian
8
retrieval method
8
alignment angle
8
sub-gaussian model
8
average retrieval
8
retrieval
7
signature
4

Similar Publications

The biomedical imaging field has grown enormously in the past decade. In the era of digitization, the demand for computer-assisted diagnosis is increasing day by day. The COVID-19 pandemic further emphasized how retrieving meaningful information from medical repositories can aid in improving the quality of patient's diagnosis.

View Article and Find Full Text PDF

Diffusion magnetic resonance imaging is a technique for non-invasive detection of microstructure in the white matter of the human brain, which is widely used in neuroscience research of the brain. However, diffusion-weighted images(DWI) are sensitive to noise, which affects the subsequent reconstruction of fiber orientation direction, microstructural parameter estimation and fiber tracking. In order to better eliminate the noise in diffusion-weighted images, this study proposes a noise reduction method combining Marchenko-Pastur principal component analysis(MPPCA) and rotation-invariant non-local means filter(RINLM) to further remove residual noise and preserve the image texture detail information.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the neurodegenerative diseases and its manual diagnosis leads to time-consuming process. MRI-based computer-aided diagnosis helps medical experts to diagnose PD more precisely and fast. Texture-based radiomic analysis is carried out on 3D MRI scans of T1 weighted and resting-state modalities.

View Article and Find Full Text PDF

Adulteration is widespread in the herbal and food industry and seriously restricts traditional Chinese medicine development. Accurate identification of geo-authentic herbs ensures drug safety and effectiveness. In this study, H NMR combined intelligent "rotation-invariant uniform local binary pattern" identification was implemented for the geographical origin confirmation of geo-authentic Chinese yam (grown in Jiaozuo, Henan province) from Chinese yams grown in other locations.

View Article and Find Full Text PDF

Automatic Segmentation and Classification for Antinuclear Antibody Images Based on Deep Learning.

Comput Intell Neurosci

February 2023

The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.

Antinuclear antibodies (ANAs) testing is the main serological diagnosis screening test for autoimmune diseases. ANAs testing is conducted principally by the indirect immunofluorescence (IIF) on human epithelial cell-substrate (HEp-2) protocol. However, due to its high variability and human subjectivity, there is an insistent need to develop an efficient method for automatic image segmentation and classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!