A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mapped clock oscillators as ring devices and their application to neuronal electrical rhythms. | LitMetric

Mapped clock oscillators as ring devices and their application to neuronal electrical rhythms.

IEEE Trans Neural Syst Rehabil Eng

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.

Published: June 2008

The mapped clock oscillator (MCO) is a second-order, Winfree-type oscillator generating two instantaneous clock variables (amplitude and phase) that are mapped to an observable output variable (voltage) via a static nonlinearity. Two fundamental classes of ring devices are presented. Their respective dynamics give rise to two oscillator forms--the labile clock and the clock--which can be coupled together in various configurations to create higher-order systems with sufficient complexity to capture the dynamics of neuronal assemblies. To demonstrate the applicability of MCOs in modelling neuronal rhythms, a hippocampal network model of four coupled oscillators was constructed and shown to exhibit rhythmic activity of varying complexity, depending on model parameters. The dynamics of the network were quantified through estimation of the maximum lyapunov exponent and the correlation dimension. Synthesis of complex neuronal rhythms may have therapeutic implications. The modular and efficient design of the MCO should facilitate the process of implementing coupled MCO networks in electronic hardware as potential neural prostheses for treating dynamic diseases such as epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2008.923708DOI Listing

Publication Analysis

Top Keywords

mapped clock
8
ring devices
8
neuronal rhythms
8
clock oscillators
4
oscillators ring
4
devices application
4
neuronal
4
application neuronal
4
neuronal electrical
4
electrical rhythms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!