In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu(2+) ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 microL; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 microg L(-1). The relative standard deviation was 7.6% for six repeated determinations (C = 500 microg L(-1)). Furthermore, the limit of detection (S/N=3) and limit of quantification (S/N=10) of the method were obtained as 1.74 and 6 microg L(-1), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.05.041DOI Listing

Publication Analysis

Top Keywords

microg l-1
12
homogeneous liquid-liquid
8
liquid-liquid extraction
8
ternary solvent
8
solvent system
8
8-hydroxy quinoline
8
extraction
5
optimization application
4
application homogeneous
4
extraction preconcentration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!