An excitatory peptide, di16a, with 49 amino acids and 10 cysteine residues was purified and characterized from the venom of Conus distans. Five AA residues were modified: one gamma-carboxyglutamate (Gla), and four hydroxyproline (Hyp) residues. A cDNA clone encoding the precursor for the peptide was characterized; the peptide has a novel cysteine framework and a distinctive signal sequence that differs from any other conotoxin superfamily. The peptide was chemically synthesized and folded, and synthetic and native materials were shown to co-elute. Injection of the synthetic peptide causes a hyperexcitable phenotype in mice greater than 3 weeks of age at lower doses, and lethargy at higher doses. The peptide defines both a previously uncharacterized gene superfamily of conopeptides, and a new Cys pattern with three vicinal Cys residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492795PMC
http://dx.doi.org/10.1016/j.toxicon.2008.05.014DOI Listing

Publication Analysis

Top Keywords

excitatory peptide
8
conus distans
8
gene superfamily
8
peptide
7
purification characterization
4
characterization novel
4
novel excitatory
4
peptide conus
4
distans venom
4
venom defines
4

Similar Publications

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD.

Genes (Basel)

December 2024

Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.

Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.

Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.

View Article and Find Full Text PDF

Novel peptidomimetic compounds attenuate hypoxic-ischemic brain injury in neonatal rats.

Exp Neurol

January 2025

Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA. Electronic address:

Hypoxic-ischemic (HI) brain injury is a common neurological problem in neonates. The postsynaptic density protein-95 (PSD-95) is an excitatory synaptic scaffolding protein that regulates synaptic function, and represents a potential therapeutic target to attenuate HI brain injury. Syn3 and d-Syn3 are novel high affinity cyclic peptides that bind the PDZ3 domain of PSD-95.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!