Topoisomerase II enzymes are essential enzymes that modulate DNA topology and play a role in chromatin compaction. While these enzymes appear to recognize and cleave the DNA in a nonrandom fashion, factors that underlie enzyme specificity remain an enigma. To gain new insights on these topics, we undertake, using NMR and molecular dynamics methods, studies of the structural and dynamic features of a 21 bp DNA segment preferentially cleaved by topoisomerases II. The large size of the oligonucleotide did not hamper the determination of structures of sufficient quality, and numerous interesting correlations between helicoidal parameters already depicted in crystals and molecular dynamics simulations are recovered here. The main feature of the sequence is the occurrence of a large opening of the base pairs in a four-residue AT-rich region located immediately at the 5' end of one of the cleaved sites. This opening seems to be largely dependent on sequence context, since a similar opening is not found in the other AT base pairs of the sequence. Furthermore, two adenine nucleotides of the same portion of the oligonucleotide present slow internal motions at the NMR timescale, revealing particular base dynamics. In conclusion, this AT-rich region presents the most salient character in the sequence and could be involved in the preferential cleavage by topoisomerase II. The examination of preferred sites in the literature pointed out the frequent occurrence of AT-rich sequences, namely matrix attachment region and scaffold attachment region sequences, at the sites cleaved by topoisomerase II. We could infer that the particular flexibility of these sequences plays an important role in enabling the formation of a competent cleavage complex. The sequences could then be selected based on their facility to undertake conformational change during the complex formation, rather than purely based on binding affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.06.024DOI Listing

Publication Analysis

Top Keywords

preferentially cleaved
8
cleaved topoisomerase
8
molecular dynamics
8
opening base
8
base pairs
8
at-rich region
8
attachment region
8
sequence
5
identification intrinsic
4
dynamics
4

Similar Publications

Hydrolyzing collagen by extracellular protease Hap of Aeromonas salmonicida: Turning chicken by-products into bioactive resources.

Food Chem

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated.

View Article and Find Full Text PDF

Analysis of fibrinogenolytic activity of South American Bothrops and Crotalus venoms reveals widespread variation on human fibrinogen cleavage.

Toxicon

January 2025

Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo - Instituto de Pesquisas Tecnológicas - Instituto Butantan, São Paulo, Brazil. Electronic address:

Fibrinogen is a common target of SVMP and SVSP. These toxins can destructively cleave fibrinogen, leading to the depletion of its levels. Herein we comparatively describe the fibrinogenolytic activity of the venom of Bothrops and Crotalus snakes, viperids of high epidemiological importance in Brazil.

View Article and Find Full Text PDF

Replacement of a single residue changes the primary specificity of thrombin.

Fertil Steril

January 2025

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:

Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.

Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.

View Article and Find Full Text PDF

Replacement of a single residue changes the primary specificity of thrombin.

J Thromb Haemost

January 2025

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:

Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.

Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.

View Article and Find Full Text PDF

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

Nat Commun

January 2025

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!