Characteristics of the adsorption/electro-reduction of Pt/Rh hexamethylene tetramine (HMTA) complex on static mercury drop electrode surface were studied. Cyclic voltammetry was carried out to get the insight about the mechanistic behaviour of the catalytic current obtained in the voltammetric scan of Pt/Rh HMTA complex in acidic solution. Adsorptive stripping voltammetry using HMTA as the complexing agent was found to be highly sensitive method for the determination of Pt/Rh. Voltammetric measurements were carried out using hanging mercury drop electrode (HMDE) as the working electrode, a glassy carbon rod as the counter and an Ag/AgCl/KCl(saturated) as the reference electrode. Various electrochemical parameters like deposition potential, deposition time, concentration of the ligand, supporting electrolyte etc. were optimized. The detection limit of Pt and Rh was found to be 4.38 pM L(-1) and 2.80 pM L(-1), respectively for the deposition time of 30 s. Simultaneous determination of Pt(II) and Rh(III) in water samples was possible. The method was found to be free from the commonly occurring interfering ions such as Cu(II), Cd(II), Zn(II), Pb(II), Cr(III), Cr(VI), Fe(III), Fe(II), Ni(II) and Co(II). Spike recovery tests for both Pt and Rh in tap water and sea water samples were also carried out. The method has been verified by analyzing certified reference material (WMG-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2008.01.053DOI Listing

Publication Analysis

Top Keywords

simultaneous determination
8
adsorptive stripping
8
stripping voltammetry
8
hexamethylene tetramine
8
tetramine hmta
8
hmta complexing
8
complexing agent
8
hmta complex
8
mercury drop
8
drop electrode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!