2-Phenoxyethanol (ethylene glycol monophenyl ether, C(8)H(10)O(2)) is a promising anaesthetic agent used in fisheries and aquaculture. The aim of this study was to develop a fast and easy method to determine 2-phenoxyethanol residue levels in fish tissue and blood plasma, and, subsequently, to use the method to monitor the dynamics of 2-phenoxyethanol residues in fish treated with anaesthetic. We developed a new procedure that employs solid phase microextraction (SPME) of the target analyte from the sample headspace followed by gas chromatography-mass spectrometry (GC-MS). Both sample handling, aimed at maximum transfer of 2-phenoxyethanol into the headspace, and SPME-GC-MS conditions were carefully optimised. Using a divinylbenzene/Carboxen/polydimethylsiloxane (PDMS/CAR/DVB) fiber for 60 min sampling at 30 degrees C and an ion trap detector operated in MS/MS mode, we obtained detection (LOD) and quantification (LOQ) limits of 0.03 and 0.1 mg kg(-1) of sample, respectively. The method was linear in a range of 0.1-250 mg kg(-1) and, depending on the sample matrix and spiking level, a repeatability (expressed as relative standard deviation, R.S.D.) of between 3% and 11% was obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2008.01.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!