The lower-limb segment elevation angles during human locomotion have been shown to co-vary in a manner such that they approximate a plane when plotted against each other over a gait cycle. This relationship has been described as the Planar Co-Variation Law and has been shown to be consistent across various modes of locomotion on level ground. The goal of this study is to determine whether the Planar Co-Variation Law will hold in situations where the orientation of the walking surface is altered and if aging will have an effect on this intersegmental coordination during these locomotor tasks. Nine healthy young females (mean age = 21.4), and nine older adult females (mean age = 73.3) were asked to complete walking trials on level ground, and walking up ramps with inclines of 3 degrees , 6 degrees , 9 degrees and 12 degrees while the kinematics of their lower limbs were measured. It was found that the Planar Co-Variation Law was held across all ramp incline conditions by both the young adult and older adult groups. It was found that the changes in intersegmental coordination required to walk up the ramp resulted in a unique orientation of the co-variation plane for both groups when walking up a particular incline. The results of this study indicate that the Planar Co-Variation Law will include situations where the walking surface is not level and provides further support to models of motor control that have been proposed where walking patterns for different modes of gait can be predicted based on the orientation of the co-variation plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-008-1464-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!