Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ern163DOI Listing

Publication Analysis

Top Keywords

pathways involved
16
volatile production
16
plant biochemical
8
wound-response pathways
8
involved production
8
production aphid-induced
8
aphid-induced plant
8
plant volatiles
8
biochemical pathways
8
involved aphid-induced
8

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.

View Article and Find Full Text PDF

Objective: Juvenile dermatomyositis (JDM) is a complex autoimmune disease, and its pathogenesis remains poorly understood. Building upon previous research on the immunological and inflammatory aspects of JDM, this study aims to investigate the role of pyroptosis in the pathogenesis of JDM using a comprehensive bioinformatics approach.

Methods: Two microarray datasets (GSE3307 and GSE11971) were obtained from the Gene Expression Omnibus database, and a list of 62 pyroptosis-related genes was compiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!