Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described. The geographic distribution of species in Australia encompasses the montane regions of the eastern Australian coastline from the Wet Tropics region of northern Queensland to the cool temperate and montane rainforests of southern Australia and Tasmania. Phylogenetic trees based upon partial sequences of the mitochondrial genes cytochrome oxidase II and 16S mtDNA show that populations tend to be clustered into allopatric geographic groups showing overall concordance with the known species distributions. The deepest division is between the cool-adapted southern subgenus, Lucifera, and the more widespread subgenus, Campara. Lucifera comprises the sister groups, A. tasmaniensis, from Tasmania and the newly described species, A. buffaloensis, found in a high-altitude cave at Mt Buffalo in the Australian Alps in Victoria. The remaining Australian glow-worms in subgenus Campara are distributed in a swathe of geographic clusters that extend from the Wet Tropics in northern Queensland to the temperate forests of southern Victoria. Samples from caves and rainforests within any one geographic location tended to cluster together within a clade. We suggest that the morphological differences between hypogean (cave) and epigean (surface) glow-worm larvae are facultative adaptations to local microclimatic conditions rather than due to the presence of cryptic species in caves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2008.04.037DOI Listing

Publication Analysis

Top Keywords

australian glow-worms
8
species australia
8
wet tropics
8
northern queensland
8
subgenus campara
8
species
5
distribution phylogenetic
4
phylogenetic relationships
4
australian
4
relationships australian
4

Similar Publications

Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence.

Proc Biol Sci

January 2021

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.

Bioluminescent beetles of the superfamily Elateroidea (fireflies, fire beetles, glow-worms) are the most speciose group of terrestrial light-producing animals. The evolution of bioluminescence in elateroids is associated with unusual morphological modifications, such as soft-bodiedness and neoteny, but the fragmentary nature of the fossil record discloses little about the origin of these adaptations. We report the discovery of a new bioluminescent elateroid beetle family from the mid-Cretaceous of northern Myanmar ( 99 Ma), Cretophengodidae fam.

View Article and Find Full Text PDF

The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-β-sheet crystallites in an abundant amorphous fraction.

Comp Biochem Physiol B Biochem Mol Biol

September 2015

Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Black Mountain Laboratories, Canberra, 2601, Australia. Electronic address:

Glow-worms (larvae of dipteran genus Arachnocampa) are restricted to moist habitats where they capture flying prey using snares composed of highly extensible silk fibres and sticky mucus droplets. Little is known about the composition or structure of glow-worm snares, or the extent of possible convergence between glow-worm and arachnid capture silks. We characterised Arachnocampa richardsae silk and mucus using X-ray scattering, Fourier transform infrared spectroscopy and amino acid analysis.

View Article and Find Full Text PDF

Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!