Neurogenesis persists in the adult brain subventricular zone where neural stem/progenitor cells (NSPCs) lie close to brain endothelial cells (BECs). We show in mouse that BECs produce bone morphogenetic proteins (BMPs). Coculture of embryonic and adult NSPCs with BECs activated the canonical BMP/Smad pathway and reduced their proliferation. We demonstrate that coculture with BECs in the presence of EGF and FGF2 induced a reversible cell cycle exit of NSPCs (LeX+) and an increase in the amount of GFAP/LeX-expressing progenitors thought to be stem cells. Levels of the phosphatidylinositol phosphatase PTEN were upregulated in NSPCs after coculture with BECs, or treatment with recombinant BMP4, with a concomitant reduction in Akt phosphorylation. Silencing Smad5 with siRNA or treatment with Noggin, a BMP antagonist, demonstrated that upregulation of PTEN in NSPCs required BMP/Smad signaling and that this pathway regulated cell cycle exit of NSPCs. Therefore, BECs may provide a feedback mechanism to control the proliferation of NSPCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2008.05.005DOI Listing

Publication Analysis

Top Keywords

bone morphogenetic
8
morphogenetic proteins
8
control proliferation
8
neural stem/progenitor
8
stem/progenitor cells
8
nspcs becs
8
coculture becs
8
cell cycle
8
cycle exit
8
exit nspcs
8

Similar Publications

Vascular calcification significantly increases the incidence of cardiovascular disease and all-cause mortality patients with chronic kidney disease(CKD), severely affecting their health and lifespan. However, the mechanisms underlying vascular calcification in CKD remain incompletely understood, and the available therapeutic agents are limited. Research has found that the transformation of vascular smooth muscle cells(VSMCs) from a contractile phenotype to an osteoblast-like phenotype is a key step in CKD-related vascular calcification.

View Article and Find Full Text PDF

Nlnemo suppresses of BMP signaling in wing development of the brown planthopper, Nilaparvata lugens.

Int J Biol Macromol

January 2025

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Nemo-like kinases (NLKs) integrate multiple signaling pathways and exhibit functional diversity in developmental processes, including the bone morphogenetic protein (BMP) pathway. However, their roles in insect wing development, particularly in hemimetabolous insects like the brown planthopper (Nilaparvata lugens), remain poorly understood. Here, we investigated the role of Nlnemo (Nlnmo), an NLK, in the wing development of N.

View Article and Find Full Text PDF

The aim of this study was to purify BMP-2 in an easy and time-efficient way. We have developed a new method in which BMP-2 is produced through leaky expression in E. coli BL21 (DE3) cells as inclusion bodies, eliminating the need for inducer Isopropyl β-D-1-thiogalactopyranoside (IPTG).

View Article and Find Full Text PDF

Bone morphogenetic protein 4 (BMP4) is widely involved in the regulation of cell proliferation and differentiation, but its role in Recurrent Spontaneous Abortion (RSA) remains unclear. RSA is a disease that affects roughly 1-2% of partner pairs, but its pathogenesis is still unclear. In recent years, many studies have focused on the role of decidual macrophages in RSA.

View Article and Find Full Text PDF

Background: Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of neurological defects and craniofacial malformations associated with prenatal ethanol exposure. While there is growing evidence for a genetic component to FASD, little is known of the cellular mechanisms underlying these ethanol-sensitive loci in facial development. Endoderm morphogenesis to form lateral protrusions called pouches is one key mechanism in facial development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!