A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. | LitMetric

Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat.

J Neurosci Methods

Neuroplasticity Laboratory, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, Germany.

Published: July 2008

Assessments of somatosensory and motor cortical somatotopy in vivo can provide important information on sensorimotor physiology. Here, novel polyimide-based thin-film microelectrode arrays (72 contacts) implanted epidurally, were used for recording of somatosensory evoked potentials (SEPs) and somatosensory cortex somatotopic maps of the rat. The objective was to evaluate this method with respect to precision and reliability. SEPs and somatosensory maps were measured twice within one session and again after 8 days of rest. Additionally, motor cortex maps were acquired once to assess the spatial relationship between somatosensory and motor representations of fore- and hindlimb within one individual. Somatosensory maps were well reproduced within and between sessions. SEP amplitudes and latencies were highly reliable within one recording session (combined intraclass correlation 90.5%), but less so between sessions (21.0%). Somatosensory map geometry was stable within and between sessions. For the forelimb the somatosensory representation had a 30% overlap with the corresponding motor area. No significant overlap was found for the hindlimb. No evidence for cortical injury was found on histology (Nissl). Thin-film epidural electrode array technology enables a detailed assessment of sensorimotor cortex physiology in vivo and can be used in longitudinal designs enabling studies of learning and plasticity processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2008.05.010DOI Listing

Publication Analysis

Top Keywords

somatosensory motor
12
somatosensory
9
thin-film epidural
8
microelectrode arrays
8
motor cortex
8
seps somatosensory
8
somatosensory maps
8
motor
5
epidural microelectrode
4
arrays somatosensory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!