Increased alanine aminotransferase (ALT) activity is associated with insulin resistance and the development of type 2 diabetes. The aim of this study was to characterize the modulation of cytosolic ALT expression in liver of gilthead sea bream (Sparus aurata) under conditions associated with increased gluconeogenesis and in streptozotocin (STZ)-treated fish. RT- and RACE-PCR assays allowed us to isolate a novel ALT isozyme (cALT2) generated from alternative splicing of cALT gene in S. aurata. HEK293 cells transfected with constructs expressing cALT2 as a C-terminal fusion with the enhanced green fluorescent protein allowed us to demonstrate that cALT2 is cytosolic. To unravel the molecular functions of cALT1 and cALT2 in liver of S. aurata, we examined tissue distribution, kinetic characterization of piscine cALT isozymes expressed in Saccharomyces cerevisiae, and regulation of hepatic cALT1 and cALT2 expression in various metabolic conditions. Kinetic analysis indicates that cALT2 is more efficient in catalysing the conversion of l-alanine to pyruvate than cALT1. Starvation increased cALT2 expression and decreased cALT1 mRNA in liver. Opposite effects were found in regularly fed fish at postprandial time 4-8h, and 6h after treatment with glucose or insulin. From these results we conclude that increased cALT2 expression occurred in liver under gluconeogenic conditions, while cALT1 was predominant during postprandial utilization of dietary nutrients. Since up-regulation of hepatic cALT2 expression occurred in STZ-induced diabetic S. aurata, increased hepatic cALT2 expression may be a promising marker in the prognosis of diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2008.05.018 | DOI Listing |
Alanine aminotransferase (ALT) catalyses a transamination reaction that links carbohydrate and amino acid metabolism. In this study, we examined the effect of silencing cytosolic ALT (cALT) expression on the hepatic metabolism in Sparus aurata. A number of siRNA and shRNA designed to down-regulate cALT expression were validated in HEK-293 cells transfected with plasmids expressing S.
View Article and Find Full Text PDFJ Mol Endocrinol
September 2010
Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain.
Alanine aminotransferase (Alt) provides a molecular link between carbohydrate and amino acid metabolism. In the cell context, the predominant Alt isozyme is located in the cytosol. To gain insight into the transcriptional regulation of the cytosolic alt gene (calt), we cloned and characterized the calt promoter from gilthead sea bream (Sparus aurata).
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2008
Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain.
Increased alanine aminotransferase (ALT) activity is associated with insulin resistance and the development of type 2 diabetes. The aim of this study was to characterize the modulation of cytosolic ALT expression in liver of gilthead sea bream (Sparus aurata) under conditions associated with increased gluconeogenesis and in streptozotocin (STZ)-treated fish. RT- and RACE-PCR assays allowed us to isolate a novel ALT isozyme (cALT2) generated from alternative splicing of cALT gene in S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!