Blockade of the KcsA potassium channel by externally applied tetraethylammonium is investigated using molecular dynamics calculations and Brownian dynamics simulations. In KcsA, the aromatic rings of four tyrosine residues located just external to the selectivity filter create an attractive energy well or a binding cage for a tetraethylammonium molecule. We first investigate the effects of re-orienting the four tyrosine residues such that the centers of the aromatic rings face the tetraethylammonium molecule directly. Then, we systematically move the residues inward in both orientations so that the radius of the binding cage formed by them becomes smaller. For each configuration, we construct a one-dimensional free energy profile by bringing in a tetraethylammonium molecule from the external reservoir toward the selectivity filter. The free energy profile is then converted to a one-dimensional potential energy profile, taking the available space between the tyrosine residues and the tetraethylammonium molecule into account. Incorporating this potential energy profile into the Brownian dynamics algorithm, we determine the conductance properties of the channel under various conditions, construct the current-tetraethylammonium-concentration curve and compare it with the experimentally determined inhibitory constant k(i) for externally applied tetraethylammonium. We show that the experimentally determined binding affinity for externally applied tetraethylammonium can be replicated when each of the four tyrosine residues is moved inward by about 0.7 angstroms, irrespective of orientation of their aromatic rings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2008.05.008 | DOI Listing |
Alzheimers Dement
December 2024
The Medical University of South Carolina, Charleston, SC, USA.
Background: Alzheimer's disease (AD) pathology can start accumulating 20-30 years before cognitive symptoms occur, with increases in inflammation, amyloid-β (Aβ), and hyperphosphorylated Tau during this time. Previous studies have shown that the post-translational modification of a single N-acetylglucosamine moiety to serine or threonine residues to cytosolic or nuclear proteins, known as O-GlcNAcylation, can modify a plethora of cellular processes, including the processing of the amyloid precursor protein, competing with phosphorylation on tau, as well as having anti-inflammatory effects. This study is designed to evaluate how increasing O-GlcNAcylation is impacting AD pathology in the most comprehensive AD rat model to date, the TgF344-AD rat model.
View Article and Find Full Text PDFFront Chem Biol
August 2024
Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States.
Introduction: Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.
Methods: Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments.
Sci Rep
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.
View Article and Find Full Text PDFClin Lung Cancer
December 2024
Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan.
Background: MET gene exon 14 skipping was identified as a potential driver mutation that occurs in approximately 3%-4% of patients with nonsmall cell lung cancer (NSCLC), typically in the absence of other driver mutations. Capmatinib and tepotinib were the first MET- tyrosine kinase inhibitors (MET-TKIs) approved by the FDA and PMDA, specifically for patients with metastatic NSCLC. Several studies have reported acquired resistance after MET-TKI treatment for MET mutation-positive NSCLC.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.
Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!