To examine the molecular mechanisms underlying breast cancer metastasis in liver and search for potential markers of metastatic progression in soft-tissue, we analyzed metastatic variants developed from the highly metastatic MDA-MB 435 cell line through in vivo stepwise selection in the athymic mice. Comparative proteomic analysis using two-dimensional electrophoresis (2DE-DIGE) revealed that 74 protein spots were reproducibly more than doubled in liver metastatic cells compared to parental counterpart. From 22 proteins identified by MALDI-TOF, belonging to intermediate filaments, intracellular transport and ATP synthesis, we generated a protein-protein interaction network containing 496 nodes, 12 of which interacted. GRP 75 was connected with four other proteins: prohibitin, HSP 27, elongin B and macropain delta chain. After functional classification, we found that pathways including hepatocyte growth factor receptor (p = 0.014), platelet-derived growth factor (p = 0.018), vascular endothelial growth factor (p = 0.021) and epidermal growth factor (p = 0.050) were predominant in liver metastatic cells, but not in lung metastatic cells. In conclusion, we suggest that GRP 75 is involved in cell proliferation, tumorigenesis and stress response in metastatic cells by recruiting signals in which the transmembrane receptor protein tyrosine kinase signaling pathway (p-value FDR = 1.71 x 10(-2)) and protein amino acid phosphorylation (p-value FDR = 3.28 x 10(-2)) might be the most significant biological process differentially increased in liver metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr800137wDOI Listing

Publication Analysis

Top Keywords

metastatic cells
16
growth factor
16
liver metastatic
8
p-value fdr
8
metastatic
7
cells
5
functional clustering
4
clustering metastasis
4
metastasis proteins
4
proteins describes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!