Study of butanol extraction through pervaporation in acetobutylic fermentation.

Biotechnol Bioeng

Chemical Engineering Department, E.T.S.E.I.B. Universitat Politécnica de Catalunya, Diagonal 647, Barcelona 08028, Spain.

Published: October 1987

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.260300516DOI Listing

Publication Analysis

Top Keywords

study butanol
4
butanol extraction
4
extraction pervaporation
4
pervaporation acetobutylic
4
acetobutylic fermentation
4
study
1
extraction
1
pervaporation
1
acetobutylic
1
fermentation
1

Similar Publications

Homochiral layered indium phosphonates: solvent modulation of morphology and chiral discrimination adsorption.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Assembling chiral coordination polymers into nano/microflower structures may improve their performance in applications such as chiral recognition and separation. In this study, we chose a chiral metal phosphonate system, , In(NO)/-, -pempH [pempH = (1-phenylethylamino)methylphosphonic acid], and carried out systematic work on the self-assembly of this system in different alcohol/HO mixed solvents under solvothermal conditions. Enantiomeric compounds -, -[In(pempH)(μ-OH)(HO)](NO) (R-, S-1) were obtained showing dense layered structures, but their morphologies varied with alcohol solvent.

View Article and Find Full Text PDF

Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.

View Article and Find Full Text PDF

Aim: To identify sarcopenia markers in urinary odor.

Methods: We performed solid-phase microextraction from the headspace and gas chromatography-mass spectrometry analysis of urinary volatile organic compounds (VOCs) in 71 healthy individuals and 68 patients diagnosed with sarcopenia according to the Asian Working Group on Sarcopenia 2019 criteria. The mass-to-charge ratios (m/z) of 10 VOCs with a significant difference in the total ion chromatogram of 220 VOCs detected in this study were compared by U-test.

View Article and Find Full Text PDF

The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.

View Article and Find Full Text PDF

Development and validation of a rapid and accurate ultra performance liquid chromatography-photodiode array method for concurrent quantification of thirty-two polyphenols in edible fruit of Cordia myxa Linn.

J Chromatogr A

December 2024

Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh), 176061, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India. Electronic address:

The aim of current work was to develop a novel, simple, sensitive, and reliable method for screening and quantification of thirty-two polyphenol compounds from Cordia myxa (C. myxa) using Ultra Performance Liquid Chromatography Photodiode Array detector (UPLC-PDA). With the help of the quaternary solvent manager and a comparison study of seven different columns packed with silica particles that are less than two micron thick (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!