Body segment inertial parameters are required as input parameters when the kinetics of human motion is to be analyzed. However, owing to interindividual differences in body composition, noninvasive inertial estimates are problematic. Dual-energy x-ray absorptiometry (DXA) is a relatively new imaging approach that can provide cost- and time-effective means for estimating these parameters with minimal exposure to radiation. With the introduction of a new generation of DXA machines, utilizing a fan-beam configuration, this study examined their accuracy as well as a new interpolative data-reduction process for estimating inertial parameters. Specifically, the inertial estimates of two objects (an ultra-high molecular density plastic rod and an animal specimen) and 50 participants were obtained. Results showed that the fan-beam DXA, along with the new interpolative data-reduction process, provided highly accurate estimates (0.10-0.39%). A greater variance was observed in the center of mass location and moment of inertia estimates, likely as a result of the course end-point location (1.31 cm). However, using a midpoint interpolation of the end-point locations, errors in the estimates were greatly reduced for the center of mass location (0.64-0.92%) and moments of inertia (-0.23 to -0.48%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jab.24.2.180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!