The development of composite material poles since 1960 has played a prominent part in performance improvement in pole-vaulting. Previous studies devoted to pole-vaulting models were based on constant mechanical characteristics. It is thus necessary to identify the local bending rigidities of the pole to build realistic pole-vaulting models. Updating methods developed for dynamic structure studies allow us to describe local mechanical characteristics. These methods are based on the comparison between experimental results and those determined numerically by finite element models. This study presents an adaptation of these methods to determine the local bending rigidities of the pole. The updating technique is validated by a deflection test of a homogeneous beam. Then, a study of the model sensitivity is carried out to investigate the procedure robustness. Finally, the updating method is applied to an old design pole and to a recent one. The results obtained vary greatly from one pole to the other; they highlight the evolutions in pole design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jab.24.2.140 | DOI Listing |
J Arthroplasty
January 2025
Hospital Clínic Barcelona, Department of Orthopaedic Surgery and Traumatology. Villarroel, 170. 08036 Barcelona, Spain.
Background: Effective management of postsurgical pain following arthroplasty remains a challenge, lacking a definitive gold standard. As most knee and hip arthroplasties are cemented or hybrid, we used the property of bone cement as a drug carrier and added powdered local anesthetics (lidocaine hydrochloride and bupivacaine hydrochloride) to the polymethylmethacrylate (PMMA) as analgesics. However, the addition of drugs to bone cement may compromise its mechanical properties, necessitating a thorough analysis.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States.
Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.
View Article and Find Full Text PDFSci Rep
January 2025
China Construction Fifth Engineering Division Corp., Ltd., Changsha, 410004, China.
In order to systematically study the bending behavior of the connection joints of the disc-buckle type formwork support, the accurate numerical model of the disc-buckle type connection joints was obtained through the experimental on the bending behavior of the connection joints of the disc-buckle type, and the bending moment-rotation curve of the joints was verified. The analysis of the failure mode and stress distribution of the joints reveals the importance of the bending behavior of each component. By establishing an accurate numerical model of the joint, the accuracy of the bending experiment of the joint was verified, and the parametric analysis of the influence factors such as the depth of the wedge insertion the disk-plate, the initial position of the wedge insertion the disk-plate, the thickness of the wedge, material constitutive of the wedge and the thickness of the disk-plate was carried out to grasp the influence of the relevant parameters on the bending behavior of the joint.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!