Efficient repair of DNA double-strand breaks (DSBs) requires the coordination of checkpoint signaling and enzymatic repair functions. To study these processes during gene conversion at a single chromosomal break, we monitored mating-type switching in Saccharomyces cerevisiae strains defective in the Rad1-Rad10-Slx4 complex. Rad1-Rad10 is a structure-specific endonuclease that removes 3' nonhomologous single-stranded ends that are generated during many recombination events. Slx4 is a known target of the DNA damage response that forms a complex with Rad1-Rad10 and is critical for 3'-end processing during repair of DSBs by single-strand annealing. We found that mutants lacking an intact Rad1-Rad10-Slx4 complex displayed RAD9- and MAD2-dependent cell cycle delays and decreased viability during mating-type switching. In particular, these mutants exhibited a unique pattern of dead and switched daughter cells arising from the same DSB-containing cell. Furthermore, we observed that mutations in post-replicative lesion bypass factors (mms2Delta, mph1Delta) resulted in decreased viability during mating-type switching and conferred shorter cell cycle delays in rad1Delta mutants. We conclude that Rad1-Rad10-Slx4 promotes efficient repair during gene conversion events involving a single 3' nonhomologous tail and propose that the rad1Delta and slx4Delta mutant phenotypes result from inefficient repair of a lesion at the MAT locus that is bypassed by replication-mediated repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516060PMC
http://dx.doi.org/10.1534/genetics.108.090654DOI Listing

Publication Analysis

Top Keywords

mating-type switching
16
viability mating-type
12
defective rad1-rad10-slx4
8
unique pattern
8
switching saccharomyces
8
saccharomyces cerevisiae
8
efficient repair
8
gene conversion
8
rad1-rad10-slx4 complex
8
complex rad1-rad10
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!