Recently it has been demonstrated that nanoelectrospray (nES) in conjunction with macro-ion mobility spectrometry (macroIMS) and condensed particle detection can be used to size various types of nanoparticles, including large biomolecules (proteins, DNA, etc.), having electrophoretic mobility diameters ranging from 3 nm to well over 100 nm. The technique is extremely sensitive; however, it lacks specificity as a result of the detector used. To explore the possibility to overcome this limitation, we demonstrate the direct coupling of the nES-macroIMS system to an inductively coupled plasma mass spectrometer (ICPMS). Technical challenges involving the coupling of the air-based nES-macroIMS with the argon-based ICPMS are addressed and overcome. The resulting novel hyphenated technique is used to determine the elemental composition of nanoparticles resulting from the electrospraying of solutions containing inorganic salts and acids (CsI and dimethylarsinic acid). Even though the sensitivity of the used ICPMS does not allow for the simultaneous sizing of proteins and the determination of their metal, metalloid, or halogen content, we have shown that it is feasible to detect and accurately size proteins at femtomole levels by adding CsI to their solutions and detecting the resulting Cs adducts. This is also possible with DNA molecules. A linear relationship between protein amount and ICPMS response for (133)Cs(+) is observed, thus hinting at the possibility of further developing the technique for quantitative analysis of large biomolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac7025578 | DOI Listing |
Sci Rep
December 2024
School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFGels
December 2024
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Agronomy and Biotechnology, China Agricultural University/ The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research of Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement, Beijing 100193, China. Electronic address:
Food Chem
December 2024
School of Life Science, Jiangxi Science &Technology Normal University, Nanchang 330013, China.
In this study, the dynamic effects of ultrasonic treatment (0-400 W) on the volatile flavor compounds of pumpkin juice under different storage periods were investigated systematically using a combination of headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques. A total of 139 and 46 volatile organic compounds (VOCs) were identified by GC-MS and GC-IMS, respectively. The results indicated that complex changes in volatile components occurred during storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!