Context: Changes over time in epigenetic marks, which are modifications of DNA such as by DNA methylation, may help explain the late onset of common human diseases. However, changes in methylation or other epigenetic marks over time in a given individual have not yet been investigated.

Objectives: To determine whether there are longitudinal changes in global DNA methylation in individuals and to evaluate whether methylation maintenance demonstrates familial clustering.

Design, Setting, And Participants: We measured global DNA methylation by luminometric methylation assay, a quantitative measurement of genome-wide DNA methylation, on DNA sampled at 2 visits on average 11 years apart in 111 individuals from an Icelandic cohort (1991 and 2002-2005) and on average 16 years apart in 126 individuals from a Utah sample (1982-1985 and 1997-2005).

Main Outcome Measure: Global methylation changes over time.

Results: Twenty-nine percent of Icelandic individuals showed greater than 10% methylation change over time (P < .001). The family-based Utah sample also showed intra-individual changes over time, and further demonstrated familial clustering of methylation change (P = .003). The family showing the greatest global methylation loss also demonstrated the greatest loss of gene-specific methylation by a separate methylation assay.

Conclusion: These data indicate that methylation changes over time and suggest that methylation maintenance may be under genetic control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581898PMC
http://dx.doi.org/10.1001/jama.299.24.2877DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
methylation
16
changes time
12
change time
8
familial clustering
8
epigenetic marks
8
global dna
8
methylation maintenance
8
average years
8
years apart
8

Similar Publications

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!