A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of drug release from biodegradable polymer blends. | LitMetric

Modeling of drug release from biodegradable polymer blends.

Eur J Pharm Biopharm

School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Published: November 2008

Numerous mathematical models that predict drug release from degradable systems have been reported. Most of these models cater only to single step, diffusion-controlled release while a few attempt to describe bi-phasic release. All these models, however, are only applicable to drug release from single (unblended) degradable polymer systems. In this paper, we propose and test novel models for drug (notably paclitaxel) release from films made of neat poly (epsilon-caprolactone) PCL, neat poly (dl-lactide-co-glycolide) PLGA and their blends. The model developed for neat PCL consists of two terms: initial burst and diffusional release. On the other hand, a more complex model proposed for tri-phasic release from neat PLGA consists of burst release, degradative (relaxation-induced) drug dissolution release and diffusional release. Finally, this very first model to predict release from blend of PLGA and PCL was developed based on a heuristic approach. Drug distribution between PCL-rich and PLGA-rich phases is dictated by partition coefficient, and the overall fraction of drug release is a summation of drug released from the two phases. The proposed models exhibited good prediction of the experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2008.05.024DOI Listing

Publication Analysis

Top Keywords

drug release
16
release
13
neat poly
8
diffusional release
8
drug
7
models
5
modeling drug
4
release biodegradable
4
biodegradable polymer
4
polymer blends
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!