Biosensor technology: technology push versus market pull.

Biotechnol Adv

Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.

Published: October 2008

Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2008.05.007DOI Listing

Publication Analysis

Top Keywords

biosensor technology
16
technology
5
biosensor
4
technology technology
4
technology push
4
push versus
4
versus market
4
market pull
4
pull biosensor
4
technology based
4

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Nanolabels for biosensors based on lateral flow immunoassays.

Anal Chim Acta

February 2025

Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain. Electronic address:

The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs.

Biosens Bioelectron

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!