Study Objective: To determine whether upregulation of P-glycoprotein is responsible for the enhanced renal clearance of dicloxacillin in patients with cystic fibrosis.

Design: Single-center, prospective, open-label, randomized, three-part crossover pharmacokinetic study.

Setting: General clinical research center.

Subjects: Eleven patients with cystic fibrosis and 11 age-matched healthy volunteers.

Intervention: All subjects received a single oral dose of dicloxacillin 500 mg alone, dicloxacillin 500 mg plus probenecid (an organic anion transport inhibitor) 1 g, and dicloxacillin 500 mg plus cyclosporine (a P-glycoprotein inhibitor) 5 mg/kg; each treatment was separated by a washout period of 48 hours. A bolus dose of iothalamate meglumine 456 mg was administered on each study day as a marker of glomerular filtration.

Measurements And Main Results: Blood and urine samples were taken serially up to 6 hours after each dose. Pharmacokinetics of dicloxacillin and iothalamate were determined by using compartmental and noncompartmental methods. Quantitative polymerase chain reaction was performed on peripheral blood mononuclear cells to measure expression of multidrug resistance 1 (MDR1) messenger RNA (mRNA). Genotyping for ABCB1 was performed to determine the presence of single nucleotide polymorphisms (exons 21 and 26). In both healthy subjects and patients with cystic fibrosis, compared with dicloxacillin alone, coadministration with probenecid produced a significantly lower renal clearance of dicloxacillin, whereas coadministration with cyclosporine resulted in no significant change; renal clearance was not significantly different between the two study groups. No correlation was found between MDR1 mRNA expression and renal clearance of dicloxacillin. The renal excretion of dicloxacillin was significantly greater in subjects with the ABCB1 exon 26 TT polymorphism when compared with subjects with the CT genotype.

Conclusion: We found no significant difference in the pharmacokinetics of dicloxacillin between patients with cystic fibrosis and healthy volunteers. Renal clearance of dicloxacillin was significantly reduced in the presence of probenecid but not with cyclosporine, suggesting that the rate-limiting step in tubular secretion of dicloxacillin is uptake mediated by the organic anion transporter, and not P-glycoprotein inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1592/phco.28.7.883DOI Listing

Publication Analysis

Top Keywords

renal clearance
24
clearance dicloxacillin
20
patients cystic
20
cystic fibrosis
16
dicloxacillin
13
dicloxacillin patients
12
dicloxacillin 500
12
p-glycoprotein inhibition
8
organic anion
8
pharmacokinetics dicloxacillin
8

Similar Publications

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

Introduction: Chronic Kidney Disease (CKD) is prevalent in Pakistan, necessitating accurate diagnostic methods. This study evaluates the CKD-EPI 2009, CKD-EPI 2021, CKD-EPI Pak, MDRD, and EKFC equations against creatinine clearance (CrCl) to determine their diagnostic accuracy for CKD in the Pakistani population.

Methods: n a retrospective cross-sectional study, data from 2,310 participants aged 18-70 were analyzed at The Aga Khan University in Karachi.

View Article and Find Full Text PDF

Introduction: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve renal outcomes in type 2 diabetes mellitus (DM2) and chronic kidney disease (CKD). A decrease in renal blood flow (RBF) with attenuation of glomerular hyperfiltration may contribute. We examined renal and systemic hemodynamic effects of SGLT2i in relevant patient categories.

View Article and Find Full Text PDF

Innovative applications of MXenes in dialysis: enhancing filtration efficiency.

Nanoscale

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.

MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes.

View Article and Find Full Text PDF

Background: Rhabdomyolysis is frequently associated with acute kidney injury (AKI). Due to the nephrotoxic properties of myoglobin, its rapid removal is relevant. If kidney replacement therapy (KRT) is necessary for AKI, a procedure with effective myoglobin elimination should be preferred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!