Fluorescence response of a 4-trifluoroacetylaminophthalimide to iodide ions upon 254 nm irradiation in MeCN.

Org Lett

Division of Chemistry and Biochemistry, The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.

Published: July 2008

The title trifluoroacetylaminophthalimide derivative produced a violet fluorescence (lambdaFLmax 392 nm) in MeCN, and it displayed a green emission (lambdaFLmax 506 nm) after irradiation at 254 nm in the presence of iodide ions. The corresponding amidate ion of the trifluoroacetamide was identified as the green fluorescence emitter. The deprotonation reaction may be caused by proton-abstracting solvated electrons generated by a photochemical charge--transfer-to-solvent process from I(-) to MeCN.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol801184xDOI Listing

Publication Analysis

Top Keywords

iodide ions
8
fluorescence response
4
response 4-trifluoroacetylaminophthalimide
4
4-trifluoroacetylaminophthalimide iodide
4
ions 254
4
254 irradiation
4
irradiation mecn
4
mecn title
4
title trifluoroacetylaminophthalimide
4
trifluoroacetylaminophthalimide derivative
4

Similar Publications

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.

View Article and Find Full Text PDF

Spatial and temporal evaluation of iodine uptake and radiodensity in meniscus tissue using contrast-enhanced micro-CT.

Heliyon

December 2024

Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.

Rationale And Objective: The visualization of soft tissues, like the meniscus, through X-ray micro-computed tomography (micro-CT), requires the use of contrast agents (CAs). While other studies have investigated CA diffusion in fibrocartilagineous tissues, this work aimed to optimize iodine staining protocols for meniscal tissue that improve their visualization by micro-CT. Specific objectives included evaluating the diffusion of CAs within meniscal samples over time, assessing volume changes due to staining, and identifying the iodine ions absorbed by the tissue.

View Article and Find Full Text PDF

Enhancing the Performance of Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells through Polyaniline-Mediated Iodine Recycling and Defect Passivation.

Small

January 2025

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Printable mesoscopic perovskite solar cells (p-MPSCs) provide an opportunity for low-cost manufacturing of photovoltaics. However, the performance of p-MPSCs is severely compromised by iodine defects. This study presents a strategy by incorporating polyaniline (PANI) to achieve both iodine recycling and iodine defect passivation to significantly improve the performance of p-MPSCs.

View Article and Find Full Text PDF

Iodine Stabilization in Perovskite Lattice for Internal Stress Relief.

Small

January 2025

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Dalian, 116023, China.

Atomic iodine ionization in perovskite crystals leads to defect formation, lattice distortion, and the occurrence of localized micro-strain. These atomic-level chemical and mechanical effects significantly alter the electronic band landscape, profoundly affecting device performance. While iodine stabilization effects have traditionally been focused on stability, their impact on electrical properties, particularly the coupling effect with internal stress and lattice strain, remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!