A highly efficient method for the palladium-catalyzed borylation of aryl halides with an inexpensive and atom-economical boron source, pinacol borane, has been developed. This system allows for the conversion of aryl and heteroaryl iodides, bromides, and several chlorides, containing a variety of functional groups, to the corresponding pinacol boronate esters. In addition to the increase in substrate scope, this is the first general method where relatively low quantities of catalyst and short reaction times can be employed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574621PMC
http://dx.doi.org/10.1021/jo800727sDOI Listing

Publication Analysis

Top Keywords

palladium-catalyzed borylation
8
borylation aryl
8
aryl halides
8
pinacol borane
8
improved system
4
system palladium-catalyzed
4
halides pinacol
4
borane highly
4
highly efficient
4
efficient method
4

Similar Publications

Palladium-Catalyzed Dual-Tasked -C-H Borylation of Aryl Iodides.

Org Lett

December 2024

School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, People's Republic of China.

Article Synopsis
  • A new method has been developed for Pd-catalyzed C-H borylation using maleimide to activate C-H bonds in aryl iodides.
  • This reaction allows for the alkylation of -positions and borylation of -C-H bonds, leading to the synthesis of functionalized 3-aryl succinimides, which are important in various organic compounds.
  • The boronate group created in this process can be further modified, showcasing the practical applications and potential of this C-H activation strategy for difunctionalizing aryl halides.
View Article and Find Full Text PDF

Herein, we report the palladium-catalyzed borylation of aryl halides (iodides or bromides) under base-free conditions utilizing a commercially available Lewis acidic mediator, Zn(OTf). Under these conditions, an array of electronically and functional-group-diverse aryl iodides and bromides undergo borylation to afford the corresponding aryl boronic esters in ≤82% isolated yields. Mechanistic investigations are consistent with Zn(OTf) enabling transmetalation between a cationic Pd(II)-Ar intermediate and Bpin via halide abstraction.

View Article and Find Full Text PDF

C-C Coupling in sterically demanding porphyrin environments.

Beilstein J Org Chem

November 2024

School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin, D02 R590, Ireland.

Unlike their planar counterparts, classic synthetic protocols for C-C bond forming reactions on nonplanar porphyrins are underdeveloped. The development of C-C bond forming reactions on nonplanar porphyrins is critical in advancing this field of study for more complex porphyrin architectures, which could be used in supramolecular assemblies, catalysis, or sensing. In this work a library of arm-extended dodecasubstituted porphyrins was synthesized through the optimization of the classic Suzuki-Miyaura coupling of peripheral haloaryl substituents with a range of boronic acids.

View Article and Find Full Text PDF

We report an efficient procedure to carry out palladium-catalyzed Miyaura borylation reactions of (hetero)aromatic halides and triflates in choline chloride (ChCl)-based deep eutectic solvents (DESs). The procedure employs bis(pinacolato)diboron as a boron source and a catalyst prepared in situ from readily available Pd(dba) and the phosphine ligand XPhos. Reactions proceed well in different ChCl-based DESs, among which the best results were provided by environmentally friendly and biodegradable mixtures with glycerol and glucose.

View Article and Find Full Text PDF

Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes.

Adv Sci (Weinh)

June 2024

State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.

Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!