A process has been developed for the bulk purification of cellulase-free beta-1,4-D-xylanase from the fungus Trichoderma harzianum E58. The process involved the primary step of ultrafiltering the culture filtrate via a 10,000-molecular-weight cut-off membrane to separate the cellulase (retentate) and xylanase (permeate) fractions. The cellulase component was concentrated by 40- to 60-fold, resulting in an enzyme complex that could effectively hydrolyze high concentrations of cellulose and xylan to glucose and xylose. The xylanase was concentrated and solvent exchanged by adsorption to a cationic exchanger, SP-ZetaPrep 250, followed by elution with a pH change in the buffer to give a purified and concentrated xylanase complex dissolved in a low-salt buffer. The resultant xylanase system was pure by the criteria of sodium dodecyl sulfate polyacrylamide electrophoresis, had a very high specific activity of 2400 IU/mg protein, was virtually free of filter paper activity, and had a ratio of contaminating filter paper activity of 2 x 10(-6) (0.009% endoglucanase activity). Approximately 3.3 g protein, which contained in excess of 7 x 10(6) IU xylanase activity, was obtained from 17 L original culture filtrate. The process scheme was designed to facilitate scale-up to an industrial level of production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.260300114 | DOI Listing |
Microbiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFFood Res Int
February 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:
Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara; Neuroscience Research Institute, University of California, Santa Barbara.
The tardigrade Hypsibius exemplaris is an emerging model organism renowned for its ability to survive environmental extremes. To explore the molecular mechanisms and genetic basis of such extremotolerance, many studies rely on RNA-sequencing (RNA-seq), which can be performed on populations ranging from large cohorts to individual animals. Reverse transcription polymerase chain reaction (RT-PCR) and RNA interference (RNAi) are subsequently used to confirm RNA-seq findings and assess the genetic requirements for candidate genes, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO composite catalysts that creates nanoscopic confinement over the TiO surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Solar System Exploration Division, NASA Goddard Space Center, Greenbelt, Maryland, USA.
Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.
Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!