Objective: Characterization of magnetic susceptibility artefacts with assessment of the gradient-echo signal decay function of echo time, pixel size, and object geometry in the case of air-filled cylinders embedded in water.
Materials And Methods: Experiments were performed with a 0.2 T magnet on a network of small interacting air-filled cylinders along with Magnetic resonance imaging (MRI) simulations integrating intravoxel dephasing. Signal decay over echo time was assessed at different pixel sizes on real and simulated images. The effects of radius, distance between cylinders and main magnetic field were studied using simulation.
Results: Signal loss was greater as echo time or pixel size increased. Voxel signal decay was not exponential but was weighted by sinus cardinalis functions integrating echo time, pixel size and field inhomogeneities which depended on main magnetic field strength and geometric configuration of the object. Simulation was able to model signal decay, even for a complex object constituted of several cylinders. The specific experimental signal modulation we observed was thus reproduced and explained by simulation.
Conclusion: The quantitative signal decay approach at 0.2 T can be used in characterization studies in the case of locally regular air/water interfaces as the signal depends on object size relative to pixel size and is relevant to the geometric configuration. Moreover, the good concordance between simulation and experiments should lead to further studies of magnetic susceptibility effects with other objects such as networks of spheres. MRI simulation is thus a potential tool for molecular and porous media imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10334-008-0119-1 | DOI Listing |
PLoS One
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).
View Article and Find Full Text PDFAnn Neurol
January 2025
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
Unlabelled: Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.
Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.
Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.
Sci Bull (Beijing)
January 2025
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.
View Article and Find Full Text PDFNoncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFCell Struct Funct
January 2025
Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University.
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!