A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Near-field focusing properties of zone plates in visible regime--new insights. | LitMetric

Near-field focusing properties of zone plates in visible regime--new insights.

Opt Express

School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore 639798.

Published: June 2008

Near-field focusing properties of zone plates are investigated in the visible regime by a 3-dimensional finite-difference time-domain method. It is shown that Frensel zone plates (FZPs) with metallic coatings can achieve subwavelength focusing in the visible wavelength. The characteristics of subwavelength focusing are found to be independent of the type of metal coatings used. All the FZPs exhibit similar shift in focal length and depth of focus when compared with classical calculations. These results indicate that plasmonic waves do not contribute to subwavelength focusing. Instead the subwavelength focusing characteristic is attributed to the interference of diffracted evanescent waves from a large numerical aperture. It is found that the near-field focusing of FZPs suppresses higher order foci such that the corresponding diffraction efficiency is improved. The use of phase zone plate structured on glass without opaque coating is proposed to improve the diffraction efficiency of subwavelength focusing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.16.009554DOI Listing

Publication Analysis

Top Keywords

subwavelength focusing
20
near-field focusing
12
zone plates
12
focusing properties
8
properties zone
8
diffraction efficiency
8
focusing
7
subwavelength
5
zone
4
plates visible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!