Living on a break: cellular senescence as a DNA-damage response.

Nat Rev Cancer

IFOM Foundation, FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139 Milan, Italy.

Published: July 2008

Cellular senescence is associated with ageing and cancer in vivo and has a proven tumour-suppressive function. Common to both ageing and cancer is the generation of DNA damage and the engagement of the DNA-damage response pathways. In this Review, the diverse mechanisms that lead to DNA-damage generation and the activation of DNA-damage-response signalling pathways are discussed, together with the evidence for their contribution to the establishment and maintenance of cellular senescence in the context of organismal ageing and cancer development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrc2440DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
ageing cancer
12
dna-damage response
8
living break
4
break cellular
4
senescence dna-damage
4
response cellular
4
senescence associated
4
associated ageing
4
cancer vivo
4

Similar Publications

Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.

View Article and Find Full Text PDF

Introduction: Glaucoma, a leading cause of irreversible blindness, is characterized by optic neuropathy and retinopathy, with primary open-angle glaucoma (POAG) being the most prevalent form. The primary pathogenic mechanism of POAG involves elevated intraocular pressure caused by chronic fibrosis of the trabecular meshwork (TM). Autophagy, a critical process for maintaining cellular homeostasis, has been implicated in fibrosis across various organs.

View Article and Find Full Text PDF

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts.

Biochim Biophys Acta Mol Cell Res

January 2025

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:

Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.

View Article and Find Full Text PDF

RNA Methylation Homeostasis in Ocular Diseases: All Eyes on Me.

Prog Retin Eye Res

January 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China. Electronic address:

RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (mA), N1-methyladenosine (mA), 5-methylcytosine (mC), and 7-methylguanosine (mG). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration.

View Article and Find Full Text PDF

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!