We recently described a novel basal bacterial promoter element that is located downstream of the -10 consensus promoter element and is recognized by region 1.2 of the sigma subunit of RNA polymerase (RNAP). In the case of Thermus aquaticus RNAP, this element has a consensus sequence GGGA and allows transcription initiation in the absence of the -35 element. In contrast, the Escherichia coli RNAP is unable to initiate transcription from GGGA-containing promoters that lack the -35 element. In the present study, we demonstrate that sigma subunits from both E. coli and T. aquaticus specifically recognize the GGGA element and that the observed species specificity of recognition of GGGA-containing promoters is determined by the RNAP core enzyme. We further demonstrate that transcription initiation by T. aquaticus RNAP on GGGA-containing promoters in the absence of the -35 element requires sigma region 4 and C-terminal domains of the alpha subunits, which interact with upstream promoter DNA. When in the context of promoters containing the -35 element, the GGGA element is recognized by holoenzyme RNAPs from both E. coli and T. aquaticus and increases stability of promoter complexes formed on these promoters. Thus, GGGA is a bona fide basal promoter element that can function in various bacteria and, depending on the properties of the RNAP core enzyme and the presence of additional promoter elements, determine species-specific differences in promoter recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504893 | PMC |
http://dx.doi.org/10.1074/jbc.M802445200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!